Prime factorization of $$$4209$$$
Your Input
Find the prime factorization of $$$4209$$$.
Solution
Start with the number $$$2$$$.
Determine whether $$$4209$$$ is divisible by $$$2$$$.
Since it is not divisible, move to the next prime number.
The next prime number is $$$3$$$.
Determine whether $$$4209$$$ is divisible by $$$3$$$.
It is divisible, thus, divide $$$4209$$$ by $$${\color{green}3}$$$: $$$\frac{4209}{3} = {\color{red}1403}$$$.
Determine whether $$$1403$$$ is divisible by $$$3$$$.
Since it is not divisible, move to the next prime number.
The next prime number is $$$5$$$.
Determine whether $$$1403$$$ is divisible by $$$5$$$.
Since it is not divisible, move to the next prime number.
The next prime number is $$$7$$$.
Determine whether $$$1403$$$ is divisible by $$$7$$$.
Since it is not divisible, move to the next prime number.
The next prime number is $$$11$$$.
Determine whether $$$1403$$$ is divisible by $$$11$$$.
Since it is not divisible, move to the next prime number.
The next prime number is $$$13$$$.
Determine whether $$$1403$$$ is divisible by $$$13$$$.
Since it is not divisible, move to the next prime number.
The next prime number is $$$17$$$.
Determine whether $$$1403$$$ is divisible by $$$17$$$.
Since it is not divisible, move to the next prime number.
The next prime number is $$$19$$$.
Determine whether $$$1403$$$ is divisible by $$$19$$$.
Since it is not divisible, move to the next prime number.
The next prime number is $$$23$$$.
Determine whether $$$1403$$$ is divisible by $$$23$$$.
It is divisible, thus, divide $$$1403$$$ by $$${\color{green}23}$$$: $$$\frac{1403}{23} = {\color{red}61}$$$.
The prime number $$${\color{green}61}$$$ has no other factors then $$$1$$$ and $$${\color{green}61}$$$: $$$\frac{61}{61} = {\color{red}1}$$$.
Since we have obtained $$$1$$$, we are done.
Now, just count the number of occurences of the divisors (green numbers), and write down the prime factorization: $$$4209 = 3 \cdot 23 \cdot 61$$$.
Answer
The prime factorization is $$$4209 = 3 \cdot 23 \cdot 61$$$A.