The calculator will find the derivative of
x2+11, with steps shown.
Related calculators:
Logarithmic Differentiation Calculator,
Implicit Differentiation Calculator with Steps
Solution
The function x2+11 is the composition f(g(x)) of two functions f(u)=u1 and g(x)=x2+1.
Apply the chain rule dxd(f(g(x)))=dud(f(u))dxd(g(x)):
(dxd(x2+11))=(dud(u1)dxd(x2+1))Apply the power rule dud(un)=nun−1 with n=−1:
(dud(u1))dxd(x2+1)=(−u21)dxd(x2+1)Return to the old variable:
−(u)2dxd(x2+1)=−(x2+1)2dxd(x2+1)The derivative of a sum/difference is the sum/difference of derivatives:
−(x2+1)2(dxd(x2+1))=−(x2+1)2(dxd(x2)+dxd(1))Apply the power rule dxd(xn)=nxn−1 with n=2:
−(x2+1)2(dxd(x2))+dxd(1)=−(x2+1)2(2x)+dxd(1)The derivative of a constant is 0:
−(x2+1)22x+(dxd(1))=−(x2+1)22x+(0)Thus, dxd(x2+11)=−(x2+1)22x.
Answer
dxd(x2+11)=−(x2+1)22xA