Derivative of $$$3 e^{- 4 r} \sin{\left(3 \theta \right)}$$$ with respect to $$$r$$$

The calculator will find the derivative of $$$3 e^{- 4 r} \sin{\left(3 \theta \right)}$$$ with respect to $$$r$$$, with steps shown.

Related calculators: Logarithmic Differentiation Calculator, Implicit Differentiation Calculator with Steps

Leave empty for autodetection.
Leave empty, if you don't need the derivative at a specific point.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\frac{d}{dr} \left(3 e^{- 4 r} \sin{\left(3 \theta \right)}\right)$$$.

Solution

Apply the constant multiple rule $$$\frac{d}{dr} \left(c f{\left(r \right)}\right) = c \frac{d}{dr} \left(f{\left(r \right)}\right)$$$ with $$$c = 3 \sin{\left(3 \theta \right)}$$$ and $$$f{\left(r \right)} = e^{- 4 r}$$$:

$${\color{red}\left(\frac{d}{dr} \left(3 e^{- 4 r} \sin{\left(3 \theta \right)}\right)\right)} = {\color{red}\left(3 \sin{\left(3 \theta \right)} \frac{d}{dr} \left(e^{- 4 r}\right)\right)}$$

The function $$$e^{- 4 r}$$$ is the composition $$$f{\left(g{\left(r \right)} \right)}$$$ of two functions $$$f{\left(u \right)} = e^{u}$$$ and $$$g{\left(r \right)} = - 4 r$$$.

Apply the chain rule $$$\frac{d}{dr} \left(f{\left(g{\left(r \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dr} \left(g{\left(r \right)}\right)$$$:

$$3 \sin{\left(3 \theta \right)} {\color{red}\left(\frac{d}{dr} \left(e^{- 4 r}\right)\right)} = 3 \sin{\left(3 \theta \right)} {\color{red}\left(\frac{d}{du} \left(e^{u}\right) \frac{d}{dr} \left(- 4 r\right)\right)}$$

The derivative of the exponential is $$$\frac{d}{du} \left(e^{u}\right) = e^{u}$$$:

$$3 \sin{\left(3 \theta \right)} {\color{red}\left(\frac{d}{du} \left(e^{u}\right)\right)} \frac{d}{dr} \left(- 4 r\right) = 3 \sin{\left(3 \theta \right)} {\color{red}\left(e^{u}\right)} \frac{d}{dr} \left(- 4 r\right)$$

Return to the old variable:

$$3 e^{{\color{red}\left(u\right)}} \sin{\left(3 \theta \right)} \frac{d}{dr} \left(- 4 r\right) = 3 e^{{\color{red}\left(- 4 r\right)}} \sin{\left(3 \theta \right)} \frac{d}{dr} \left(- 4 r\right)$$

Apply the constant multiple rule $$$\frac{d}{dr} \left(c f{\left(r \right)}\right) = c \frac{d}{dr} \left(f{\left(r \right)}\right)$$$ with $$$c = -4$$$ and $$$f{\left(r \right)} = r$$$:

$$3 e^{- 4 r} \sin{\left(3 \theta \right)} {\color{red}\left(\frac{d}{dr} \left(- 4 r\right)\right)} = 3 e^{- 4 r} \sin{\left(3 \theta \right)} {\color{red}\left(- 4 \frac{d}{dr} \left(r\right)\right)}$$

Apply the power rule $$$\frac{d}{dr} \left(r^{n}\right) = n r^{n - 1}$$$ with $$$n = 1$$$, in other words, $$$\frac{d}{dr} \left(r\right) = 1$$$:

$$- 12 e^{- 4 r} \sin{\left(3 \theta \right)} {\color{red}\left(\frac{d}{dr} \left(r\right)\right)} = - 12 e^{- 4 r} \sin{\left(3 \theta \right)} {\color{red}\left(1\right)}$$

Thus, $$$\frac{d}{dr} \left(3 e^{- 4 r} \sin{\left(3 \theta \right)}\right) = - 12 e^{- 4 r} \sin{\left(3 \theta \right)}$$$.

Answer

$$$\frac{d}{dr} \left(3 e^{- 4 r} \sin{\left(3 \theta \right)}\right) = - 12 e^{- 4 r} \sin{\left(3 \theta \right)}$$$A