Derivative of $$$4 x$$$
Related calculators: Logarithmic Differentiation Calculator, Implicit Differentiation Calculator with Steps
Your Input
Find $$$\frac{d}{dx} \left(4 x\right)$$$.
Solution
Apply the constant multiple rule $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ with $$$c = 4$$$ and $$$f{\left(x \right)} = x$$$:
$${\color{red}\left(\frac{d}{dx} \left(4 x\right)\right)} = {\color{red}\left(4 \frac{d}{dx} \left(x\right)\right)}$$Apply the power rule $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ with $$$n = 1$$$, in other words, $$$\frac{d}{dx} \left(x\right) = 1$$$:
$$4 {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} = 4 {\color{red}\left(1\right)}$$Thus, $$$\frac{d}{dx} \left(4 x\right) = 4$$$.
Answer
$$$\frac{d}{dx} \left(4 x\right) = 4$$$A