Integral of $$$x^{2}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int x^{2}\, dx$$$.
Solution
Apply the power rule $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=2$$$:
$${\color{red}{\int{x^{2} d x}}}={\color{red}{\frac{x^{1 + 2}}{1 + 2}}}={\color{red}{\left(\frac{x^{3}}{3}\right)}}$$
Therefore,
$$\int{x^{2} d x} = \frac{x^{3}}{3}$$
Add the constant of integration:
$$\int{x^{2} d x} = \frac{x^{3}}{3}+C$$
Answer: $$$\int{x^{2} d x}=\frac{x^{3}}{3}+C$$$