Aproxima $$$\int\limits_{1}^{2} 30 \sin{\left(2 x \right)}\, dx$$$ con $$$n = 8$$$ usando la suma de Riemann

La calculadora aproximará la integral de $$$30 \sin{\left(2 x \right)}$$$ de $$$1$$$ a $$$2$$$ con $$$n = 8$$$ subintervalos utilizando la suma de Riemann, con los pasos que se muestran.

Calculadora relacionada: Calculadora de suma de Riemann para una tabla

Si la calculadora no calculó algo o ha identificado un error, o tiene una sugerencia/comentario, escríbalo en los comentarios a continuación.

Tu aportación

Aproxime la integral $$$\int\limits_{1}^{2} 30 \sin{\left(2 x \right)}\, dx$$$ con $$$n = 8$$$ usando la suma de Riemann por la izquierda.

Solución

La suma de Riemann izquierda (también conocida como la aproximación del punto final izquierdo) utiliza el punto final izquierdo de un subintervalo para calcular la altura del rectángulo de aproximación:

$$$\int\limits_{a}^{b} f{\left(x \right)}\, dx\approx \Delta x \left(f{\left(x_{0} \right)} + f{\left(x_{1} \right)} + f{\left(x_{2} \right)}\dots f{\left(x_{n-2} \right)} + f{\left(x_{n-1} \right)}\right)$$$

donde $$$\Delta x = \frac{b - a}{n}$$$.

Tenemos que $$$f{\left(x \right)} = 30 \sin{\left(2 x \right)}$$$, $$$a = 1$$$, $$$b = 2$$$ y $$$n = 8$$$.

Por lo tanto, $$$\Delta x = \frac{2 - 1}{8} = \frac{1}{8}$$$.

Divida el intervalo $$$\left[1, 2\right]$$$ en $$$n = 8$$$ subintervalos de longitud $$$\Delta x = \frac{1}{8}$$$ con los siguientes puntos finales: $$$a = 1$$$, $$$\frac{9}{8}$$$, $$$\frac{5}{4}$$$, $$$\frac{11}{8}$$$, $$$\frac{3}{2}$$$, $$$\frac{13}{8}$$$, $$$\frac{7}{4}$$$, $$$\frac{15}{8}$$$, $$$2 = b$$$.

Ahora, simplemente evalúe la función en los extremos izquierdos de los subintervalos.

$$$f{\left(x_{0} \right)} = f{\left(1 \right)} = 30 \sin{\left(2 \right)}\approx 27.278922804770451$$$

$$$f{\left(x_{1} \right)} = f{\left(\frac{9}{8} \right)} = 30 \sin{\left(\frac{9}{4} \right)}\approx 23.342195906637637$$$

$$$f{\left(x_{2} \right)} = f{\left(\frac{5}{4} \right)} = 30 \sin{\left(\frac{5}{2} \right)}\approx 17.954164323118695$$$

$$$f{\left(x_{3} \right)} = f{\left(\frac{11}{8} \right)} = 30 \sin{\left(\frac{11}{4} \right)}\approx 11.449829761569951$$$

$$$f{\left(x_{4} \right)} = f{\left(\frac{3}{2} \right)} = 30 \sin{\left(3 \right)}\approx 4.233600241796017$$$

$$$f{\left(x_{5} \right)} = f{\left(\frac{13}{8} \right)} = 30 \sin{\left(\frac{13}{4} \right)}\approx -3.245854035903251$$$

$$$f{\left(x_{6} \right)} = f{\left(\frac{7}{4} \right)} = 30 \sin{\left(\frac{7}{2} \right)}\approx -10.523496830688595$$$

$$$f{\left(x_{7} \right)} = f{\left(\frac{15}{8} \right)} = 30 \sin{\left(\frac{15}{4} \right)}\approx -17.146839562270313$$$

Finalmente, simplemente sume los valores anteriores y multiplíquelos por $$$\Delta x = \frac{1}{8}$$$: $$$\frac{1}{8} \left(27.278922804770451 + 23.342195906637637 + 17.954164323118695 + 11.449829761569951 + 4.233600241796017 - 3.245854035903251 - 10.523496830688595 - 17.146839562270313\right) = 6.667815326128824.$$$

Respuesta

$$$\int\limits_{1}^{2} 30 \sin{\left(2 x \right)}\, dx\approx 6.667815326128824$$$A