Calculadora de derivadas parciales
Calcular derivadas parciales paso a paso
Esta calculadora en línea calculará la derivada parcial de la función, con los pasos que se muestran. Puede especificar cualquier orden de integración.
Solution
Your input: find $$$\frac{\partial}{\partial x}\left(x^{2} + y^{2} + z^{2} - 14\right)$$$
The derivative of a sum/difference is the sum/difference of derivatives:
$${\color{red}{\frac{\partial}{\partial x}\left(x^{2} + y^{2} + z^{2} - 14\right)}}={\color{red}{\left(- \frac{\partial}{\partial x}\left(14\right) + \frac{\partial}{\partial x}\left(x^{2}\right) + \frac{\partial}{\partial x}\left(y^{2}\right) + \frac{\partial}{\partial x}\left(z^{2}\right)\right)}}$$The derivative of a constant is 0:
$${\color{red}{\frac{\partial}{\partial x}\left(z^{2}\right)}} - \frac{\partial}{\partial x}\left(14\right) + \frac{\partial}{\partial x}\left(x^{2}\right) + \frac{\partial}{\partial x}\left(y^{2}\right)={\color{red}{\left(0\right)}} - \frac{\partial}{\partial x}\left(14\right) + \frac{\partial}{\partial x}\left(x^{2}\right) + \frac{\partial}{\partial x}\left(y^{2}\right)$$The derivative of a constant is 0:
$$- {\color{red}{\frac{\partial}{\partial x}\left(14\right)}} + \frac{\partial}{\partial x}\left(x^{2}\right) + \frac{\partial}{\partial x}\left(y^{2}\right)=- {\color{red}{\left(0\right)}} + \frac{\partial}{\partial x}\left(x^{2}\right) + \frac{\partial}{\partial x}\left(y^{2}\right)$$Apply the power rule $$$\frac{\partial}{\partial x} \left(x^{n} \right)=n\cdot x^{-1+n}$$$ with $$$n=2$$$:
$${\color{red}{\frac{\partial}{\partial x}\left(x^{2}\right)}} + \frac{\partial}{\partial x}\left(y^{2}\right)={\color{red}{\left(2 x^{-1 + 2}\right)}} + \frac{\partial}{\partial x}\left(y^{2}\right)=2 x + \frac{\partial}{\partial x}\left(y^{2}\right)$$The derivative of a constant is 0:
$$2 x + {\color{red}{\frac{\partial}{\partial x}\left(y^{2}\right)}}=2 x + {\color{red}{\left(0\right)}}$$Thus, $$$\frac{\partial}{\partial x}\left(x^{2} + y^{2} + z^{2} - 14\right)=2 x$$$
Answer: $$$\frac{\partial}{\partial x}\left(x^{2} + y^{2} + z^{2} - 14\right)=2 x$$$