Calculadora de derivadas parciales
Calcular derivadas parciales paso a paso
Esta calculadora en línea calculará la derivada parcial de la función, con los pasos que se muestran. Puede especificar cualquier orden de integración.
Solution
Your input: find $$$\frac{\partial^{2}}{\partial y^{2}}\left(x^{4} - 4 x y + y^{4} + 1\right)$$$
First, find $$$\frac{\partial}{\partial y}\left(x^{4} - 4 x y + y^{4} + 1\right)$$$
The derivative of a sum/difference is the sum/difference of derivatives:
$${\color{red}{\frac{\partial}{\partial y}\left(x^{4} - 4 x y + y^{4} + 1\right)}}={\color{red}{\left(\frac{\partial}{\partial y}\left(1\right) + \frac{\partial}{\partial y}\left(x^{4}\right) + \frac{\partial}{\partial y}\left(y^{4}\right) - \frac{\partial}{\partial y}\left(4 x y\right)\right)}}$$Apply the power rule $$$\frac{\partial}{\partial y} \left(y^{n} \right)=n\cdot y^{-1+n}$$$ with $$$n=4$$$:
$${\color{red}{\frac{\partial}{\partial y}\left(y^{4}\right)}} + \frac{\partial}{\partial y}\left(1\right) + \frac{\partial}{\partial y}\left(x^{4}\right) - \frac{\partial}{\partial y}\left(4 x y\right)={\color{red}{\left(4 y^{-1 + 4}\right)}} + \frac{\partial}{\partial y}\left(1\right) + \frac{\partial}{\partial y}\left(x^{4}\right) - \frac{\partial}{\partial y}\left(4 x y\right)=4 y^{3} + \frac{\partial}{\partial y}\left(1\right) + \frac{\partial}{\partial y}\left(x^{4}\right) - \frac{\partial}{\partial y}\left(4 x y\right)$$Apply the constant multiple rule $$$\frac{\partial}{\partial y} \left(c \cdot f \right)=c \cdot \frac{\partial}{\partial y} \left(f \right)$$$ with $$$c=4 x$$$ and $$$f=y$$$:
$$4 y^{3} - {\color{red}{\frac{\partial}{\partial y}\left(4 x y\right)}} + \frac{\partial}{\partial y}\left(1\right) + \frac{\partial}{\partial y}\left(x^{4}\right)=4 y^{3} - {\color{red}{4 x \frac{\partial}{\partial y}\left(y\right)}} + \frac{\partial}{\partial y}\left(1\right) + \frac{\partial}{\partial y}\left(x^{4}\right)$$Apply the power rule $$$\frac{\partial}{\partial y} \left(y^{n} \right)=n\cdot y^{-1+n}$$$ with $$$n=1$$$, in other words $$$\frac{\partial}{\partial y} \left(y \right)=1$$$:
$$- 4 x {\color{red}{\frac{\partial}{\partial y}\left(y\right)}} + 4 y^{3} + \frac{\partial}{\partial y}\left(1\right) + \frac{\partial}{\partial y}\left(x^{4}\right)=- 4 x {\color{red}{1}} + 4 y^{3} + \frac{\partial}{\partial y}\left(1\right) + \frac{\partial}{\partial y}\left(x^{4}\right)$$The derivative of a constant is 0:
$$- 4 x + 4 y^{3} + {\color{red}{\frac{\partial}{\partial y}\left(1\right)}} + \frac{\partial}{\partial y}\left(x^{4}\right)=- 4 x + 4 y^{3} + {\color{red}{\left(0\right)}} + \frac{\partial}{\partial y}\left(x^{4}\right)$$The derivative of a constant is 0:
$$- 4 x + 4 y^{3} + {\color{red}{\frac{\partial}{\partial y}\left(x^{4}\right)}}=- 4 x + 4 y^{3} + {\color{red}{\left(0\right)}}$$Thus, $$$\frac{\partial}{\partial y}\left(x^{4} - 4 x y + y^{4} + 1\right)=- 4 x + 4 y^{3}$$$
Next, $$$\frac{\partial^{2}}{\partial y^{2}}\left(x^{4} - 4 x y + y^{4} + 1\right)=\frac{\partial}{\partial y} \left(\frac{\partial}{\partial y}\left(x^{4} - 4 x y + y^{4} + 1\right) \right)=\frac{\partial}{\partial y}\left(- 4 x + 4 y^{3}\right)$$$
The derivative of a sum/difference is the sum/difference of derivatives:
$${\color{red}{\frac{\partial}{\partial y}\left(- 4 x + 4 y^{3}\right)}}={\color{red}{\left(- \frac{\partial}{\partial y}\left(4 x\right) + \frac{\partial}{\partial y}\left(4 y^{3}\right)\right)}}$$Apply the constant multiple rule $$$\frac{\partial}{\partial y} \left(c \cdot f \right)=c \cdot \frac{\partial}{\partial y} \left(f \right)$$$ with $$$c=4$$$ and $$$f=y^{3}$$$:
$${\color{red}{\frac{\partial}{\partial y}\left(4 y^{3}\right)}} - \frac{\partial}{\partial y}\left(4 x\right)={\color{red}{\left(4 \frac{\partial}{\partial y}\left(y^{3}\right)\right)}} - \frac{\partial}{\partial y}\left(4 x\right)$$Apply the power rule $$$\frac{\partial}{\partial y} \left(y^{n} \right)=n\cdot y^{-1+n}$$$ with $$$n=3$$$:
$$4 {\color{red}{\frac{\partial}{\partial y}\left(y^{3}\right)}} - \frac{\partial}{\partial y}\left(4 x\right)=4 {\color{red}{\left(3 y^{-1 + 3}\right)}} - \frac{\partial}{\partial y}\left(4 x\right)=12 y^{2} - \frac{\partial}{\partial y}\left(4 x\right)$$The derivative of a constant is 0:
$$12 y^{2} - {\color{red}{\frac{\partial}{\partial y}\left(4 x\right)}}=12 y^{2} - {\color{red}{\left(0\right)}}$$Thus, $$$\frac{\partial}{\partial y}\left(- 4 x + 4 y^{3}\right)=12 y^{2}$$$
Therefore, $$$\frac{\partial^{2}}{\partial y^{2}}\left(x^{4} - 4 x y + y^{4} + 1\right)=12 y^{2}$$$
Answer: $$$\frac{\partial^{2}}{\partial y^{2}}\left(x^{4} - 4 x y + y^{4} + 1\right)=12 y^{2}$$$