Simplify (AB)+(BC)+(AC)\left(A \cdot B\right) + \left(B \cdot C\right) + \left(A \cdot \overline{C}\right)

The calculator will simplify the boolean expression (AB)+(BC)+(AC)\left(A \cdot B\right) + \left(B \cdot C\right) + \left(A \cdot \overline{C}\right), with steps shown.

Related calculator: Truth Table Calculator

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Simplify the boolean expression (AB)+(BC)+(AC)\left(A \cdot B\right) + \left(B \cdot C\right) + \left(A \cdot \overline{C}\right).

Solution

Apply the consensus law (xy)+(xz)+(yz)=(xy)+(xz)\left(x \cdot y\right) + \left(\overline{x} \cdot z\right) + \left(y \cdot z\right) = \left(x \cdot y\right) + \left(\overline{x} \cdot z\right) with x=Cx = C, y=By = B, and z=Az = A:

((AB)+(BC)+(AC))=((CB)+(CA)){\color{red}\left(\left(A \cdot B\right) + \left(B \cdot C\right) + \left(A \cdot \overline{C}\right)\right)} = {\color{red}\left(\left(C \cdot B\right) + \left(\overline{C} \cdot A\right)\right)}

Answer

(AB)+(BC)+(AC)=(CB)+(CA)\left(A \cdot B\right) + \left(B \cdot C\right) + \left(A \cdot \overline{C}\right) = \left(C \cdot B\right) + \left(\overline{C} \cdot A\right)