$$$\frac{8}{9}\cdot \left\langle 1, 2, -2\right\rangle$$$
Tu aportación
Calcular $$$\frac{8}{9}\cdot \left\langle 1, 2, -2\right\rangle$$$.
Solución
Multiplica cada coordenada del vector por el escalar:
$$${\color{DarkMagenta}\left(\frac{8}{9}\right)}\cdot \left\langle 1, 2, -2\right\rangle = \left\langle {\color{DarkMagenta}\left(\frac{8}{9}\right)}\cdot \left(1\right), {\color{DarkMagenta}\left(\frac{8}{9}\right)}\cdot \left(2\right), {\color{DarkMagenta}\left(\frac{8}{9}\right)}\cdot \left(-2\right)\right\rangle = \left\langle \frac{8}{9}, \frac{16}{9}, - \frac{16}{9}\right\rangle$$$
Respuesta
$$$\frac{8}{9}\cdot \left\langle 1, 2, -2\right\rangle = \left\langle \frac{8}{9}, \frac{16}{9}, - \frac{16}{9}\right\rangle\approx \left\langle 0.888888888888889, 1.777777777777778, -1.777777777777778\right\rangle$$$A