Prime factorization of $$$2550$$$
Your Input
Find the prime factorization of $$$2550$$$.
Solution
Start with the number $$$2$$$.
Determine whether $$$2550$$$ is divisible by $$$2$$$.
It is divisible, thus, divide $$$2550$$$ by $$${\color{green}2}$$$: $$$\frac{2550}{2} = {\color{red}1275}$$$.
Determine whether $$$1275$$$ is divisible by $$$2$$$.
Since it is not divisible, move to the next prime number.
The next prime number is $$$3$$$.
Determine whether $$$1275$$$ is divisible by $$$3$$$.
It is divisible, thus, divide $$$1275$$$ by $$${\color{green}3}$$$: $$$\frac{1275}{3} = {\color{red}425}$$$.
Determine whether $$$425$$$ is divisible by $$$3$$$.
Since it is not divisible, move to the next prime number.
The next prime number is $$$5$$$.
Determine whether $$$425$$$ is divisible by $$$5$$$.
It is divisible, thus, divide $$$425$$$ by $$${\color{green}5}$$$: $$$\frac{425}{5} = {\color{red}85}$$$.
Determine whether $$$85$$$ is divisible by $$$5$$$.
It is divisible, thus, divide $$$85$$$ by $$${\color{green}5}$$$: $$$\frac{85}{5} = {\color{red}17}$$$.
The prime number $$${\color{green}17}$$$ has no other factors then $$$1$$$ and $$${\color{green}17}$$$: $$$\frac{17}{17} = {\color{red}1}$$$.
Since we have obtained $$$1$$$, we are done.
Now, just count the number of occurences of the divisors (green numbers), and write down the prime factorization: $$$2550 = 2 \cdot 3 \cdot 5^{2} \cdot 17$$$.
Answer
The prime factorization is $$$2550 = 2 \cdot 3 \cdot 5^{2} \cdot 17$$$A.