Prime factorization of $$$27$$$

The calculator will find the prime factorization of $$$27$$$, with steps shown.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find the prime factorization of $$$27$$$.

Solution

Start with the number $$$2$$$.

Determine whether $$$27$$$ is divisible by $$$2$$$.

Since it is not divisible, move to the next prime number.

The next prime number is $$$3$$$.

Determine whether $$$27$$$ is divisible by $$$3$$$.

It is divisible, thus, divide $$$27$$$ by $$${\color{green}3}$$$: $$$\frac{27}{3} = {\color{red}9}$$$.

Determine whether $$$9$$$ is divisible by $$$3$$$.

It is divisible, thus, divide $$$9$$$ by $$${\color{green}3}$$$: $$$\frac{9}{3} = {\color{red}3}$$$.

The prime number $$${\color{green}3}$$$ has no other factors then $$$1$$$ and $$${\color{green}3}$$$: $$$\frac{3}{3} = {\color{red}1}$$$.

Since we have obtained $$$1$$$, we are done.

Now, just count the number of occurences of the divisors (green numbers), and write down the prime factorization: $$$27 = 3^{3}$$$.

Answer

The prime factorization is $$$27 = 3^{3}$$$A.