Prime factorization of $$$425$$$

The calculator will find the prime factorization of $$$425$$$, with steps shown.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find the prime factorization of $$$425$$$.

Solution

Start with the number $$$2$$$.

Determine whether $$$425$$$ is divisible by $$$2$$$.

Since it is not divisible, move to the next prime number.

The next prime number is $$$3$$$.

Determine whether $$$425$$$ is divisible by $$$3$$$.

Since it is not divisible, move to the next prime number.

The next prime number is $$$5$$$.

Determine whether $$$425$$$ is divisible by $$$5$$$.

It is divisible, thus, divide $$$425$$$ by $$${\color{green}5}$$$: $$$\frac{425}{5} = {\color{red}85}$$$.

Determine whether $$$85$$$ is divisible by $$$5$$$.

It is divisible, thus, divide $$$85$$$ by $$${\color{green}5}$$$: $$$\frac{85}{5} = {\color{red}17}$$$.

The prime number $$${\color{green}17}$$$ has no other factors then $$$1$$$ and $$${\color{green}17}$$$: $$$\frac{17}{17} = {\color{red}1}$$$.

Since we have obtained $$$1$$$, we are done.

Now, just count the number of occurences of the divisors (green numbers), and write down the prime factorization: $$$425 = 5^{2} \cdot 17$$$.

Answer

The prime factorization is $$$425 = 5^{2} \cdot 17$$$A.