Factorización prima de $$$4446$$$
Tu aportación
Encuentre la descomposición en factores primos de $$$4446$$$.
Solución
Comience con el número $$$2$$$.
Determina si $$$4446$$$ es divisible por $$$2$$$.
Es divisible, por lo tanto, divide $$$4446$$$ entre $$${\color{green}2}$$$: $$$\frac{4446}{2} = {\color{red}2223}$$$.
Determina si $$$2223$$$ es divisible por $$$2$$$.
Como no es divisible, pasa al siguiente número primo.
El siguiente número primo es $$$3$$$.
Determina si $$$2223$$$ es divisible por $$$3$$$.
Es divisible, por lo tanto, divide $$$2223$$$ entre $$${\color{green}3}$$$: $$$\frac{2223}{3} = {\color{red}741}$$$.
Determina si $$$741$$$ es divisible por $$$3$$$.
Es divisible, por lo tanto, divide $$$741$$$ entre $$${\color{green}3}$$$: $$$\frac{741}{3} = {\color{red}247}$$$.
Determina si $$$247$$$ es divisible por $$$3$$$.
Como no es divisible, pasa al siguiente número primo.
El siguiente número primo es $$$5$$$.
Determina si $$$247$$$ es divisible por $$$5$$$.
Como no es divisible, pasa al siguiente número primo.
El siguiente número primo es $$$7$$$.
Determina si $$$247$$$ es divisible por $$$7$$$.
Como no es divisible, pasa al siguiente número primo.
El siguiente número primo es $$$11$$$.
Determina si $$$247$$$ es divisible por $$$11$$$.
Como no es divisible, pasa al siguiente número primo.
El siguiente número primo es $$$13$$$.
Determina si $$$247$$$ es divisible por $$$13$$$.
Es divisible, por lo tanto, divide $$$247$$$ entre $$${\color{green}13}$$$: $$$\frac{247}{13} = {\color{red}19}$$$.
El número primo $$${\color{green}19}$$$ no tiene otros factores que $$$1$$$ y $$${\color{green}19}$$$: $$$\frac{19}{19} = {\color{red}1}$$$.
Ya que hemos obtenido $$$1$$$, hemos terminado.
Ahora, solo cuenta el número de ocurrencias de los divisores (números verdes) y escribe la descomposición en factores primos: $$$4446 = 2 \cdot 3^{2} \cdot 13 \cdot 19$$$.
Respuesta
La descomposición en factores primos es $$$4446 = 2 \cdot 3^{2} \cdot 13 \cdot 19$$$A.