Prime factorization of $$$760$$$
Your Input
Find the prime factorization of $$$760$$$.
Solution
Start with the number $$$2$$$.
Determine whether $$$760$$$ is divisible by $$$2$$$.
It is divisible, thus, divide $$$760$$$ by $$${\color{green}2}$$$: $$$\frac{760}{2} = {\color{red}380}$$$.
Determine whether $$$380$$$ is divisible by $$$2$$$.
It is divisible, thus, divide $$$380$$$ by $$${\color{green}2}$$$: $$$\frac{380}{2} = {\color{red}190}$$$.
Determine whether $$$190$$$ is divisible by $$$2$$$.
It is divisible, thus, divide $$$190$$$ by $$${\color{green}2}$$$: $$$\frac{190}{2} = {\color{red}95}$$$.
Determine whether $$$95$$$ is divisible by $$$2$$$.
Since it is not divisible, move to the next prime number.
The next prime number is $$$3$$$.
Determine whether $$$95$$$ is divisible by $$$3$$$.
Since it is not divisible, move to the next prime number.
The next prime number is $$$5$$$.
Determine whether $$$95$$$ is divisible by $$$5$$$.
It is divisible, thus, divide $$$95$$$ by $$${\color{green}5}$$$: $$$\frac{95}{5} = {\color{red}19}$$$.
The prime number $$${\color{green}19}$$$ has no other factors then $$$1$$$ and $$${\color{green}19}$$$: $$$\frac{19}{19} = {\color{red}1}$$$.
Since we have obtained $$$1$$$, we are done.
Now, just count the number of occurences of the divisors (green numbers), and write down the prime factorization: $$$760 = 2^{3} \cdot 5 \cdot 19$$$.
Answer
The prime factorization is $$$760 = 2^{3} \cdot 5 \cdot 19$$$A.