Integral de sec5(x)\sec^{5}{\left(x \right)}

La calculadora hallará la integral/antiderivada de sec5(x)\sec^{5}{\left(x \right)}, con los pasos mostrados.

Calculadora relacionada: Calculadora integral

Solución

For the integral sec5(x)dx\int{\sec^{5}{\left(x \right)} d x}, use integration by parts udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}.

Let u=sec3(x)\operatorname{u}=\sec^{3}{\left(x \right)} and dv=sec2(x)dx\operatorname{dv}=\sec^{2}{\left(x \right)} dx.

Then du=(sec3(x))dx=3tan(x)sec3(x)dx\operatorname{du}=\left(\sec^{3}{\left(x \right)}\right)^{\prime }dx=3 \tan{\left(x \right)} \sec^{3}{\left(x \right)} dx (steps can be seen ») and v=sec2(x)dx=tan(x)\operatorname{v}=\int{\sec^{2}{\left(x \right)} d x}=\tan{\left(x \right)} (steps can be seen »).

So,

sec5(x)dx=sec3(x)tan(x)tan(x)3tan(x)sec3(x)dx=tan(x)sec3(x)3tan2(x)sec3(x)dx\int{\sec^{5}{\left(x \right)} d x}=\sec^{3}{\left(x \right)} \cdot \tan{\left(x \right)}-\int{\tan{\left(x \right)} \cdot 3 \tan{\left(x \right)} \sec^{3}{\left(x \right)} d x}=\tan{\left(x \right)} \sec^{3}{\left(x \right)} - \int{3 \tan^{2}{\left(x \right)} \sec^{3}{\left(x \right)} d x}

Strip out the constant:

tan(x)sec3(x)3tan2(x)sec3(x)dx=tan(x)sec3(x)3tan2(x)sec3(x)dx\tan{\left(x \right)} \sec^{3}{\left(x \right)} - \int{3 \tan^{2}{\left(x \right)} \sec^{3}{\left(x \right)} d x}=\tan{\left(x \right)} \sec^{3}{\left(x \right)} - 3 \int{\tan^{2}{\left(x \right)} \sec^{3}{\left(x \right)} d x}

Apply the formula tan2(x)=sec2(x)1\tan^{2}{\left(x \right)} = \sec^{2}{\left(x \right)} - 1:

tan(x)sec3(x)3tan2(x)sec3(x)dx=tan(x)sec3(x)3(sec2(x)1)sec3(x)dx\tan{\left(x \right)} \sec^{3}{\left(x \right)} - 3 \int{\tan^{2}{\left(x \right)} \sec^{3}{\left(x \right)} d x}=\tan{\left(x \right)} \sec^{3}{\left(x \right)} - 3 \int{\left(\sec^{2}{\left(x \right)} - 1\right) \sec^{3}{\left(x \right)} d x}

Expand:

tan(x)sec3(x)3(sec2(x)1)sec3(x)dx=tan(x)sec3(x)3(sec5(x)sec3(x))dx\tan{\left(x \right)} \sec^{3}{\left(x \right)} - 3 \int{\left(\sec^{2}{\left(x \right)} - 1\right) \sec^{3}{\left(x \right)} d x}=\tan{\left(x \right)} \sec^{3}{\left(x \right)} - 3 \int{\left(\sec^{5}{\left(x \right)} - \sec^{3}{\left(x \right)}\right)d x}

The integral of a difference is the difference of integrals:

tan(x)sec3(x)3(sec5(x)sec3(x))dx=tan(x)sec3(x)+3sec3(x)dx3sec5(x)dx\tan{\left(x \right)} \sec^{3}{\left(x \right)} - 3 \int{\left(\sec^{5}{\left(x \right)} - \sec^{3}{\left(x \right)}\right)d x}=\tan{\left(x \right)} \sec^{3}{\left(x \right)} + 3 \int{\sec^{3}{\left(x \right)} d x} - 3 \int{\sec^{5}{\left(x \right)} d x}

Thus, we get the following simple linear equation with respect to the integral:

sec5(x)dx=tan(x)sec3(x)+3sec3(x)dx3sec5(x)dx{\color{red}{\int{\sec^{5}{\left(x \right)} d x}}}=\tan{\left(x \right)} \sec^{3}{\left(x \right)} + 3 \int{\sec^{3}{\left(x \right)} d x} - 3 {\color{red}{\int{\sec^{5}{\left(x \right)} d x}}}

Solving it, we obtain that

sec5(x)dx=tan(x)sec3(x)4+3sec3(x)dx4\int{\sec^{5}{\left(x \right)} d x}=\frac{\tan{\left(x \right)} \sec^{3}{\left(x \right)}}{4} + \frac{3 \int{\sec^{3}{\left(x \right)} d x}}{4}

For the integral sec3(x)dx\int{\sec^{3}{\left(x \right)} d x}, use integration by parts udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}.

Let u=sec(x)\operatorname{u}=\sec{\left(x \right)} and dv=sec2(x)dx\operatorname{dv}=\sec^{2}{\left(x \right)} dx.

Then du=(sec(x))dx=tan(x)sec(x)dx\operatorname{du}=\left(\sec{\left(x \right)}\right)^{\prime }dx=\tan{\left(x \right)} \sec{\left(x \right)} dx (steps can be seen ») and v=sec2(x)dx=tan(x)\operatorname{v}=\int{\sec^{2}{\left(x \right)} d x}=\tan{\left(x \right)} (steps can be seen »).

Por lo tanto,

sec3(x)dx=sec(x)tan(x)tan(x)tan(x)sec(x)dx=tan(x)sec(x)tan2(x)sec(x)dx\int{\sec^{3}{\left(x \right)} d x}=\sec{\left(x \right)} \cdot \tan{\left(x \right)}-\int{\tan{\left(x \right)} \cdot \tan{\left(x \right)} \sec{\left(x \right)} d x}=\tan{\left(x \right)} \sec{\left(x \right)} - \int{\tan^{2}{\left(x \right)} \sec{\left(x \right)} d x}

Apply the formula tan2(x)=sec2(x)1\tan^{2}{\left(x \right)} = \sec^{2}{\left(x \right)} - 1:

tan(x)sec(x)tan2(x)sec(x)dx=tan(x)sec(x)(sec2(x)1)sec(x)dx\tan{\left(x \right)} \sec{\left(x \right)} - \int{\tan^{2}{\left(x \right)} \sec{\left(x \right)} d x}=\tan{\left(x \right)} \sec{\left(x \right)} - \int{\left(\sec^{2}{\left(x \right)} - 1\right) \sec{\left(x \right)} d x}

Expand:

tan(x)sec(x)(sec2(x)1)sec(x)dx=tan(x)sec(x)(sec3(x)sec(x))dx\tan{\left(x \right)} \sec{\left(x \right)} - \int{\left(\sec^{2}{\left(x \right)} - 1\right) \sec{\left(x \right)} d x}=\tan{\left(x \right)} \sec{\left(x \right)} - \int{\left(\sec^{3}{\left(x \right)} - \sec{\left(x \right)}\right)d x}

The integral of a difference is the difference of integrals:

tan(x)sec(x)(sec3(x)sec(x))dx=tan(x)sec(x)+sec(x)dxsec3(x)dx\tan{\left(x \right)} \sec{\left(x \right)} - \int{\left(\sec^{3}{\left(x \right)} - \sec{\left(x \right)}\right)d x}=\tan{\left(x \right)} \sec{\left(x \right)} + \int{\sec{\left(x \right)} d x} - \int{\sec^{3}{\left(x \right)} d x}

Thus, we get the following simple linear equation with respect to the integral:

sec3(x)dx=tan(x)sec(x)+sec(x)dxsec3(x)dx{\color{red}{\int{\sec^{3}{\left(x \right)} d x}}}=\tan{\left(x \right)} \sec{\left(x \right)} + \int{\sec{\left(x \right)} d x} - {\color{red}{\int{\sec^{3}{\left(x \right)} d x}}}

Solving it, we obtain that

sec3(x)dx=tan(x)sec(x)2+sec(x)dx2\int{\sec^{3}{\left(x \right)} d x}=\frac{\tan{\left(x \right)} \sec{\left(x \right)}}{2} + \frac{\int{\sec{\left(x \right)} d x}}{2}

Por lo tanto,

tan(x)sec3(x)4+3sec3(x)dx4=tan(x)sec3(x)4+3(tan(x)sec(x)2+sec(x)dx2)4\frac{\tan{\left(x \right)} \sec^{3}{\left(x \right)}}{4} + \frac{3 {\color{red}{\int{\sec^{3}{\left(x \right)} d x}}}}{4} = \frac{\tan{\left(x \right)} \sec^{3}{\left(x \right)}}{4} + \frac{3 {\color{red}{\left(\frac{\tan{\left(x \right)} \sec{\left(x \right)}}{2} + \frac{\int{\sec{\left(x \right)} d x}}{2}\right)}}}{4}

Rewrite the secant as sec(x)=1cos(x)\sec\left(x\right)=\frac{1}{\cos\left(x\right)}:

tan(x)sec3(x)4+3tan(x)sec(x)8+3sec(x)dx8=tan(x)sec3(x)4+3tan(x)sec(x)8+31cos(x)dx8\frac{\tan{\left(x \right)} \sec^{3}{\left(x \right)}}{4} + \frac{3 \tan{\left(x \right)} \sec{\left(x \right)}}{8} + \frac{3 {\color{red}{\int{\sec{\left(x \right)} d x}}}}{8} = \frac{\tan{\left(x \right)} \sec^{3}{\left(x \right)}}{4} + \frac{3 \tan{\left(x \right)} \sec{\left(x \right)}}{8} + \frac{3 {\color{red}{\int{\frac{1}{\cos{\left(x \right)}} d x}}}}{8}

Rewrite the cosine in terms of the sine using the formula cos(x)=sin(x+π2)\cos\left(x\right)=\sin\left(x + \frac{\pi}{2}\right) and then rewrite the sine using the double angle formula sin(x)=2sin(x2)cos(x2)\sin\left(x\right)=2\sin\left(\frac{x}{2}\right)\cos\left(\frac{x}{2}\right):

tan(x)sec3(x)4+3tan(x)sec(x)8+31cos(x)dx8=tan(x)sec3(x)4+3tan(x)sec(x)8+312sin(x2+π4)cos(x2+π4)dx8\frac{\tan{\left(x \right)} \sec^{3}{\left(x \right)}}{4} + \frac{3 \tan{\left(x \right)} \sec{\left(x \right)}}{8} + \frac{3 {\color{red}{\int{\frac{1}{\cos{\left(x \right)}} d x}}}}{8} = \frac{\tan{\left(x \right)} \sec^{3}{\left(x \right)}}{4} + \frac{3 \tan{\left(x \right)} \sec{\left(x \right)}}{8} + \frac{3 {\color{red}{\int{\frac{1}{2 \sin{\left(\frac{x}{2} + \frac{\pi}{4} \right)} \cos{\left(\frac{x}{2} + \frac{\pi}{4} \right)}} d x}}}}{8}

Multiply the numerator and denominator by sec2(x2+π4)\sec^2\left(\frac{x}{2} + \frac{\pi}{4} \right):

tan(x)sec3(x)4+3tan(x)sec(x)8+312sin(x2+π4)cos(x2+π4)dx8=tan(x)sec3(x)4+3tan(x)sec(x)8+3sec2(x2+π4)2tan(x2+π4)dx8\frac{\tan{\left(x \right)} \sec^{3}{\left(x \right)}}{4} + \frac{3 \tan{\left(x \right)} \sec{\left(x \right)}}{8} + \frac{3 {\color{red}{\int{\frac{1}{2 \sin{\left(\frac{x}{2} + \frac{\pi}{4} \right)} \cos{\left(\frac{x}{2} + \frac{\pi}{4} \right)}} d x}}}}{8} = \frac{\tan{\left(x \right)} \sec^{3}{\left(x \right)}}{4} + \frac{3 \tan{\left(x \right)} \sec{\left(x \right)}}{8} + \frac{3 {\color{red}{\int{\frac{\sec^{2}{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}{2 \tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}} d x}}}}{8}

Let u=tan(x2+π4)u=\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}.

Then du=(tan(x2+π4))dx=sec2(x2+π4)2dxdu=\left(\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}\right)^{\prime }dx = \frac{\sec^{2}{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}{2} dx (steps can be seen »), and we have that sec2(x2+π4)dx=2du\sec^{2}{\left(\frac{x}{2} + \frac{\pi}{4} \right)} dx = 2 du.

The integral becomes

tan(x)sec3(x)4+3tan(x)sec(x)8+3sec2(x2+π4)2tan(x2+π4)dx8=tan(x)sec3(x)4+3tan(x)sec(x)8+31udu8\frac{\tan{\left(x \right)} \sec^{3}{\left(x \right)}}{4} + \frac{3 \tan{\left(x \right)} \sec{\left(x \right)}}{8} + \frac{3 {\color{red}{\int{\frac{\sec^{2}{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}{2 \tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}} d x}}}}{8} = \frac{\tan{\left(x \right)} \sec^{3}{\left(x \right)}}{4} + \frac{3 \tan{\left(x \right)} \sec{\left(x \right)}}{8} + \frac{3 {\color{red}{\int{\frac{1}{u} d u}}}}{8}

The integral of 1u\frac{1}{u} is 1udu=ln(u)\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}:

tan(x)sec3(x)4+3tan(x)sec(x)8+31udu8=tan(x)sec3(x)4+3tan(x)sec(x)8+3ln(u)8\frac{\tan{\left(x \right)} \sec^{3}{\left(x \right)}}{4} + \frac{3 \tan{\left(x \right)} \sec{\left(x \right)}}{8} + \frac{3 {\color{red}{\int{\frac{1}{u} d u}}}}{8} = \frac{\tan{\left(x \right)} \sec^{3}{\left(x \right)}}{4} + \frac{3 \tan{\left(x \right)} \sec{\left(x \right)}}{8} + \frac{3 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{8}

Recall that u=tan(x2+π4)u=\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}:

3ln(u)8+tan(x)sec3(x)4+3tan(x)sec(x)8=3ln(tan(x2+π4))8+tan(x)sec3(x)4+3tan(x)sec(x)8\frac{3 \ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{8} + \frac{\tan{\left(x \right)} \sec^{3}{\left(x \right)}}{4} + \frac{3 \tan{\left(x \right)} \sec{\left(x \right)}}{8} = \frac{3 \ln{\left(\left|{{\color{red}{\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}}}\right| \right)}}{8} + \frac{\tan{\left(x \right)} \sec^{3}{\left(x \right)}}{4} + \frac{3 \tan{\left(x \right)} \sec{\left(x \right)}}{8}

Por lo tanto,

sec5(x)dx=3ln(tan(x2+π4))8+tan(x)sec3(x)4+3tan(x)sec(x)8\int{\sec^{5}{\left(x \right)} d x} = \frac{3 \ln{\left(\left|{\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}\right| \right)}}{8} + \frac{\tan{\left(x \right)} \sec^{3}{\left(x \right)}}{4} + \frac{3 \tan{\left(x \right)} \sec{\left(x \right)}}{8}

Añade la constante de integración:

sec5(x)dx=3ln(tan(x2+π4))8+tan(x)sec3(x)4+3tan(x)sec(x)8+C\int{\sec^{5}{\left(x \right)} d x} = \frac{3 \ln{\left(\left|{\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}\right| \right)}}{8} + \frac{\tan{\left(x \right)} \sec^{3}{\left(x \right)}}{4} + \frac{3 \tan{\left(x \right)} \sec{\left(x \right)}}{8}+C

Answer: sec5(x)dx=3ln(tan(x2+π4))8+tan(x)sec3(x)4+3tan(x)sec(x)8+C\int{\sec^{5}{\left(x \right)} d x}=\frac{3 \ln{\left(\left|{\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}\right| \right)}}{8} + \frac{\tan{\left(x \right)} \sec^{3}{\left(x \right)}}{4} + \frac{3 \tan{\left(x \right)} \sec{\left(x \right)}}{8}+C