Cube of Sum and Difference

Cube of sum and difference:

(a±b)3=a3±3a2b+3ab2±b3\color{purple}{\left(a\pm b\right)^3=a^3\pm 3a^2 b+3ab^2\pm b^3}

Let's see how to derive it.

Recall, that exponent is just repeating multiplication.

Thus, we can write that (a+b)3=(a+b)(a+b)2{{\left({a}+{b}\right)}}^{{3}}={\left({a}+{b}\right)}{{\left({a}+{b}\right)}}^{{2}}.

From square of sum/difference note, we know, that (a+b)2=a2+2ab+b2{{\left({a}+{b}\right)}}^{{2}}={{a}}^{{2}}+{2}{a}{b}+{{b}}^{{2}}.

Thus, (a+b)3=(a+b)(a2+2ab+b2){{\left({a}+{b}\right)}}^{{3}}={\left({a}+{b}\right)}{\left({{a}}^{{2}}+{2}{a}{b}+{{b}}^{{2}}\right)}.

Finally, just multiply polynomials: (a+b)(a2+2ab+b2)=aa2+a2ab+ab2+ba2+b2ab+bb2={\left({a}+{b}\right)}{\left({{a}}^{{2}}+{2}{a}{b}+{{b}}^{{2}}\right)}={a}\cdot{{a}}^{{2}}+{a}\cdot{2}{a}{b}+{a}\cdot{{b}}^{{2}}+{b}\cdot{{a}}^{{2}}+{b}\cdot{2}{a}{b}+{b}\cdot{{b}}^{{2}}=

=a3+3a2b+3ab2+b3={{a}}^{{3}}+{3}{{a}}^{{2}}{b}+{3}{a}{{b}}^{{2}}+{{b}}^{{3}}.

Similarly, it can be shown, that (ab)3=a33a2b+3ab2b3{{\left({a}-{b}\right)}}^{{3}}={{a}}^{{3}}-{3}{{a}}^{{2}}{b}+{3}{a}{{b}}^{{2}}-{{b}}^{{3}}.

Or, more shortly: (a±b)3=a3±3a2b+3ab2±b2{{\left({a}\pm{b}\right)}}^{{3}}={{a}}^{{3}}\pm{3}{{a}}^{{2}}{b}+{3}{a}{{b}}^{{2}}\pm{{b}}^{{2}}.

Example 1. Multiply (2x+y)3{{\left({2}{x}+{y}\right)}}^{{3}}.

Here a=2x{a}={2}{x} and b=y{b}={y}.

Just use above formula: (2x+y)3=(2x)3+3(2x)2(y)+3(2x)(y)2+(y)3=8x3+12x2y+6xy2+y3{{\left({2}{x}+{y}\right)}}^{{3}}={{\left({2}{x}\right)}}^{{3}}+{3}\cdot{{\left({2}{x}\right)}}^{{2}}\cdot{\left({y}\right)}+{3}\cdot{\left({2}{x}\right)}\cdot{{\left({y}\right)}}^{{2}}+{{\left({y}\right)}}^{{3}}={8}{{x}}^{{3}}+{12}{{x}}^{{2}}{y}+{6}{x}{{y}}^{{2}}+{{y}}^{{3}}.

Let's see how to handle minus sign.

Example 2. Multiply (34ab2cd)3{{\left(\frac{{3}}{{4}}{a}{b}-{2}{c}{d}\right)}}^{{3}}.

Here a=34ab{a}=\frac{{3}}{{4}}{a}{b} and b=2cd{b}={2}{c}{d}.

Now, use formula for difference: (34ab2cd)3=(34ab)33(34ab)2(2cd)+3(34ab)(2cd)2(2cd)3={{\left(\frac{{3}}{{4}}{a}{b}-{2}{c}{d}\right)}}^{{3}}={{\left(\frac{{3}}{{4}}{a}{b}\right)}}^{{3}}-{3}\cdot{{\left(\frac{{3}}{{4}}{a}{b}\right)}}^{{2}}\cdot{\left({2}{c}{d}\right)}+{3}\cdot{\left(\frac{{3}}{{4}}{a}{b}\right)}\cdot{{\left({2}{c}{d}\right)}}^{{2}}-{{\left({2}{c}{d}\right)}}^{{3}}=

=2764a3b3278a2b2cd+9abc2d28c3d3=\frac{{27}}{{64}}{{a}}^{{3}}{{b}}^{{3}}-\frac{{27}}{{8}}{{a}}^{{2}}{{b}}^{{2}}{c}{d}+{9}{a}{b}{{c}}^{{2}}{{d}}^{{2}}-{8}{{c}}^{{3}}{{d}}^{{3}}.

Finally, let's do a slightly harder example.

Example 3. Multiply the following: (xyz2x2)3{{\left(-{x}{y}{z}-{2}{{x}}^{{2}}\right)}}^{{3}}.

Till now, we didn't see two minus signs, but this case can be handled easily.

There are two options:

  • a=xyz{a}=-{x}{y}{z} and b=2x2{b}=-{2}{{x}}^{{2}}; apply sum formula.
  • a=xyz{a}=-{x}{y}{z} and b=2x2{b}={2}{{x}}^{{2}}; apply difference formula.

I choose second option: (xyz2x2)3=(xyz)33(xyz)2(2x2)+3(xyz)(2x2)2(2x2)3={{\left(-{x}{y}{z}-{2}{{x}}^{{2}}\right)}}^{{3}}={{\left(-{x}{y}{z}\right)}}^{{3}}-{3}\cdot{{\left(-{x}{y}{z}\right)}}^{{2}}\cdot{\left({2}{{x}}^{{2}}\right)}+{3}\cdot{\left(-{x}{y}{z}\right)}\cdot{{\left({2}{{x}}^{{2}}\right)}}^{{2}}-{{\left({2}{{x}}^{{2}}\right)}}^{{3}}=

=x3y3z36x4y2z212x5yz8x6=-{{x}}^{{3}}{{y}}^{{3}}{{z}}^{{3}}-{6}{{x}}^{{4}}{{y}}^{{2}}{{z}}^{{2}}-{12}{{x}}^{{5}}{y}{z}-{8}{{x}}^{{6}}.

From last example we see, that (ab)3=(a+b)3{\color{purple}{{{{\left(-{a}-{b}\right)}}^{{3}}=-{{\left({a}+{b}\right)}}^{{3}}}}}.

Now, it is time to exercise.

Exercise 1. Multiply (4z+3y)3{{\left({4}{z}+{3}{y}\right)}}^{{3}}.

Answer: 64z3+144z2y+108zy2+27y3{64}{{z}}^{{3}}+{144}{{z}}^{{2}}{y}+{108}{z}{{y}}^{{2}}+{27}{{y}}^{{3}}.

Exercise 2. Multiply (13x3y2+2x)3{{\left(-\frac{{1}}{{3}}{{x}}^{{3}}{{y}}^{{2}}+{2}{x}\right)}}^{{3}}.

Answer: 127x9y6+23x7y44x5y2+8x3-\frac{{1}}{{27}}{{x}}^{{9}}{{y}}^{{6}}+\frac{{2}}{{3}}{{x}}^{{7}}{{y}}^{{4}}-{4}{{x}}^{{5}}{{y}}^{{2}}+{8}{{x}}^{{3}}.

Hint: either swap summands ((13x3y2+2x)3=(2x13x3y2)3{{\left(-\frac{{1}}{{3}}{{x}}^{{3}}{{y}}^{{2}}+{2}{x}\right)}}^{{3}}={{\left({2}{x}-\frac{{1}}{{3}}{{x}}^{{3}}{{y}}^{{2}}\right)}}^{{3}}: commutative property of addition) or proceed as always.

Exercise 3. Multiply the following: (2x1)3{{\left(-{2}{x}-{1}\right)}}^{{3}}.

Answer: 8x312x26x1-{8}{{x}}^{{3}}-{12}{{x}}^{{2}}-{6}{x}-{1}.