Dividing Polynomials by Monomial

To multiply polynomial by monomial, one should use sum rule for fractions in reverse direction: a+bc=ac+bc\frac{{{a}+{b}}}{{c}}=\frac{{a}}{{c}}+\frac{{b}}{{c}} (in fact, there can be more than two terms in the numerator).

In other words, we just break down polynomial, then, just divide monomials and you're done.

Example 1. Divide 4x3+6x2+10x2x\frac{{{4}{{x}}^{{3}}+{6}{{x}}^{{2}}+{10}{x}}}{{{2}{x}}}.

4x3+6x2+10x2x=\frac{{\color{green}{{{4}{{x}}^{{3}}+{6}{{x}}^{{2}}+{10}{x}}}}}{{{\color{red}{{{2}{x}}}}}}=

=4x32x+6x22x+10x2x==\frac{{{\color{green}{{{4}{{x}}^{{3}}}}}}}{{{\color{red}{{{2}{x}}}}}}+\frac{{{\color{green}{{{6}{{x}}^{{2}}}}}}}{{{\color{red}{{{2}{x}}}}}}+\frac{{{\color{green}{{{10}{x}}}}}}{{{\color{red}{{{2}{x}}}}}}= (break down polynomial)

=2x2+3x+5={2}{{x}}^{{2}}+{3}{x}+{5} (divide monomials)

Answer: 4x3+6x2+10x2x=2x2+3x+5\frac{{{4}{{x}}^{{3}}+{6}{{x}}^{{2}}+{10}{x}}}{{{2}{x}}}={2}{{x}}^{{2}}+{3}{x}+{5}.

Negative terms are handled in the same way.

Example 2. Multiply the following: (3x3x25x+37)÷(13x2){\left({3}{{x}}^{{3}}-{{x}}^{{2}}-{5}{x}+\frac{{3}}{{7}}\right)}\div{\left(\frac{{1}}{{3}}{{x}}^{{2}}\right)}.

2x3x25x+3713x2=\frac{{{\color{green}{{{2}{{x}}^{{3}}-{{x}}^{{2}}-{5}{x}+\frac{{3}}{{7}}}}}}}{{{\color{red}{{\frac{{1}}{{3}}{{x}}^{{2}}}}}}}=

=2x313x2+x213x2+5x13x2+3713x2==\frac{{{\color{green}{{{2}{{x}}^{{3}}}}}}}{{{\color{red}{{\frac{{1}}{{3}}{{x}}^{{2}}}}}}}+\frac{{{\color{green}{{-{{x}}^{{2}}}}}}}{{{\color{red}{{\frac{{1}}{{3}}{{x}}^{{2}}}}}}}+\frac{{{\color{green}{{-{5}{x}}}}}}{{{\color{red}{{\frac{{1}}{{3}}{{x}}^{{2}}}}}}}+\frac{{{\color{green}{{\frac{{3}}{{7}}}}}}}{{{\color{red}{{\frac{{1}}{{3}}{{x}}^{{2}}}}}}}= (split polynomial)

=6x+315x+97x2={6}{x}+{3}-\frac{{15}}{{x}}+\frac{{9}}{{{7}{{x}}^{{2}}}} (divide monomials)

Answer: (3x3x25x+37)÷(13x2)=6x+315x+97x2{\left({3}{{x}}^{{3}}-{{x}}^{{2}}-{5}{x}+\frac{{3}}{{7}}\right)}\div{\left(\frac{{1}}{{3}}{{x}}^{{2}}\right)}={6}{x}+{3}-\frac{{15}}{{x}}+\frac{{9}}{{{7}{{x}}^{{2}}}}.

Note: above example shows, that result of division polynomial by monomial is not always polynomial.

Of course, polynomials with many variables can also be handled in a similar way.

Example 3. Divide (3x5y+2xz7xy2z){\left({3}{{x}}^{{5}}{y}+{2}{x}{z}-{7}{x}{{y}}^{{2}}-{z}\right)} by 4x2y2-{4}{{x}}^{{2}}{{y}}^{{2}}.

3x5y+2xz7xy2z4x2y2=\frac{{{3}{{x}}^{{5}}{y}+{2}{x}{z}-{7}{x}{{y}}^{{2}}-{z}}}{{-{4}{{x}}^{{2}}{{y}}^{{2}}}}=

=3x5y4x2y2+2xz4x2y2+7xy24x2y2+z4x2y2==\frac{{{3}{{x}}^{{5}}{y}}}{{-{4}{{x}}^{{2}}{{y}}^{{2}}}}+\frac{{{2}{x}{z}}}{{-{4}{{x}}^{{2}}{{y}}^{{2}}}}+\frac{{-{7}{x}{{y}}^{{2}}}}{{-{4}{{x}}^{{2}}{{y}}^{{2}}}}+\frac{{-{z}}}{{-{4}{{x}}^{{2}}{{y}}^{{2}}}}=

=3x34yz2xy2+74x+z4x2y2=-\frac{{{3}{{x}}^{{3}}}}{{{4}{y}}}-\frac{{z}}{{{2}{x}{{y}}^{{2}}}}+\frac{{7}}{{{4}{x}}}+\frac{{z}}{{{4}{{x}}^{{2}}{{y}}^{{2}}}}.

Answer: 3x5y+2xz7xy2z4x2y2=3x34yz2xy2+74x+z4x2y2\frac{{{3}{{x}}^{{5}}{y}+{2}{x}{z}-{7}{x}{{y}}^{{2}}-{z}}}{{-{4}{{x}}^{{2}}{{y}}^{{2}}}}=-\frac{{{3}{{x}}^{{3}}}}{{{4}{y}}}-\frac{{z}}{{{2}{x}{{y}}^{{2}}}}+\frac{{7}}{{{4}{x}}}+\frac{{z}}{{{4}{{x}}^{{2}}{{y}}^{{2}}}}.

Now, it is time to exercise.

Exercise 1. Divide x5+2x4+5x25x2\frac{{{{x}}^{{5}}+{2}{{x}}^{{4}}+{5}{{x}}^{{2}}}}{{{5}{{x}}^{{2}}}}.

Answer: 15x3+25x2+1\frac{{1}}{{5}}{{x}}^{{3}}+\frac{{2}}{{5}}{{x}}^{{2}}+{1}.

Exercise 2. Divide (3a37a2+2b){\left({3}{{a}}^{{3}}-{7}{{a}}^{{2}}+{2}{b}\right)} by 27a2-\frac{{2}}{{7}}{{a}}^{{2}}.

Answer: 212a+4927ba2-\frac{{21}}{{2}}{a}+\frac{{49}}{{2}}-\frac{{{7}{b}}}{{{{a}}^{{2}}}}.

Exercise 3. Divide the following: (5a2b23a3bc+35a2b110ab)÷(3ab){\left({5}{{a}}^{{2}}{{b}}^{{2}}-{3}{{a}}^{{3}}{b}{c}+\frac{{3}}{{5}}{{a}}^{{2}}{b}-\frac{{1}}{{10}}{a}{b}\right)}\div{\left({3}{a}{b}\right)}.

Answer: 53aba2c+15a130\frac{{5}}{{3}}{a}{b}-{{a}}^{{2}}{c}+\frac{{1}}{{5}}{a}-\frac{{1}}{{30}}.