Synthetic Division
Synthetic Division is a method, similar to polynomial long division, but it requires less writing and fewer calculations. However, it can be used only for dividing polynomial in one variable by linear polynomial $$${x}-{a}$$$.
Advantages of this method:
- less space on a paper
- fewer calculations
- calculations are made without variables
- fewer sign errors, because additions are made instead of subtractions (as in long division)
Disadvantage: it is only used for dividing polynomial by LINEAR polynomial. In other cases it won't work.
Example 1. Divide $$${{x}}^{{2}}-{7}{x}+{10}$$$ by $$${x}-{2}$$$, using synthetic division.
First, we need to order degrees of polynomial from greatest to lowest.
It is already done: $$${\color{green}{{{1}}}}{{x}}^{{2}}{\color{cyan}{{-{7}}}}{x}{\color{purple}{{+{10}}}}$$$.
Also, $$${\color{brown}{{{a}={2}}}}$$$.
Next, write coefficients in the special form:
$$$\begin{array}{r|lll}\phantom{2}&x^2&x^1&x^0\\\color{brown}{2}&\color{green}{1}&\color{cyan}{-7}&\color{purple}{10}\\\phantom{1}&\phantom{-7}&\phantom{10}\\\hline
\end{array}$$$
Now, perform the following steps:
Take coefficient of the leading term and carry it down unchanged. | $$$\begin{array}{r|lll}2&1&-7&10\\\phantom{2}&\color{red}{\downarrow}&\phantom{-7}&\phantom{10}\\\hline\phantom{2}&\color{red}{1}&\phantom{-7}&\phantom{10}\end{array}$$$ |
Multiply carry-down value by $$${a}$$$: $$${1}\cdot{2}={2}$$$, and write result into the next column. | $$$\begin{array}{r|lll}\color{red}{2}&1&-7&10\\\phantom{2}&\downarrow&\color{red}{+2}&\phantom{10}\\\hline \phantom{2}&\color{red}{1^{\nearrow}}&\phantom{-7}&\phantom{10}\end{array}$$$ |
Add down the column. | $$$\begin{array}{r|lll}2&1&\color{red}{-7}&10\\\phantom{2}&\downarrow&\color{red}{+2}&\phantom{10}\\\hline \phantom{2}&1^{\nearrow}&\color{red}{-5}&\phantom{10}\end{array}$$$ |
Multiply calculated result by $$${a}$$$: $$${\left(-{5}\right)}\cdot{2}=-{10}$$$, and write the result into the next column. | $$$\begin{array}{r|lll}\color{red}{2}&1&-7&\phantom{-}10\\\phantom{2}&\downarrow&+2&\color{red}{-10}\\\hline \phantom{2}&1^{\nearrow}&\color{red}{-5^{\nearrow}}&\phantom{10}\end{array}$$$ |
Add down the column. | $$$\begin{array}{r|lll}2&1&-7&\phantom{-}\color{red}{10}\\\phantom{2}&\downarrow&+2&\color{red}{-10}\\\hline \phantom{2}&1^{\nearrow}&-5^{\nearrow}&\phantom{-1}\color{red}{0}\end{array}$$$ |
We are done.
Coefficients under the horizontal line (except last) are coefficients of the quotient. Last coefficient is a remainder (it is zero).
Thus, quotient is $$${1}{x}-{5}$$$ or simply $$${x}-{5}$$$.
Answer: $$$\frac{{{{x}}^{{2}}-{7}{x}+{10}}}{{{x}-{2}}}={x}-{5}$$$.
Sometimes, there will be missing terms.
For example, in $$${{x}}^{{3}}-{1}$$$ missing terms are the terms, that involve $$${{x}}^{{2}}$$$ and $$${x}$$$.
To fix that, just add missing terms with zero coefficient. This doesn't change anything.
Example 2. Divide $$$\frac{{-{5}{x}+{3}{{x}}^{{3}}-{4}}}{{{x}+{1}}}$$$.
Order degrees of dividend from greatest to lowest: $$${3}{{x}}^{{3}}-{5}{x}-{4}$$$.
There is missing term, involving $$${{x}}^{{2}}$$$, so we add it with zero coefficient: $$${3}{{x}}^{{3}}+{\color{red}{{{0}{{x}}^{{2}}}}}-{5}{x}-{4}$$$.
Since, $$${x}+{1}={x}-{\left(-{1}\right)}$$$, then $$${a}=-{1}$$$.
Next, write coefficients in the special form:
$$$\begin{array}{r|llll}\phantom{-1}&x^3&x^2&x^1&x^0\\-1&3&0&-5&-4\\\phantom{1}&\phantom{-7}&\phantom{10}\\\hline
\end{array}$$$
Now, perform the following steps:
Take coefficient of the leading term and carry it down unchanged. | $$$\begin{array}{r|llll}-1&3&0&-5&-4\\\phantom{-1}&\color{red}{\downarrow}&\phantom{0}&\phantom{-5}&\phantom{-4}\\\hline\phantom{-1}&\color{red}{3}&\phantom{0}&\phantom{-5}&\phantom{-4}\end{array}$$$ |
Multiply carry-down value by $$${a}$$$: $$${3}\cdot{\left(-{1}\right)}=-{3}$$$, and write result into the next column. | $$$\begin{array}{r|llll}\color{red}{-1}&3&\phantom{-}0&-5&-4\\\phantom{-1}&\downarrow&\color{red}{-3}&\phantom{-5}&\phantom{-4}\\\hline\phantom{-1}&\color{red}{3^{\nearrow}}&\phantom{-3}&\phantom{-5}&\phantom{-4}\end{array}$$$ |
Add down the column. | $$$\begin{array}{r|llll}-1&3&\phantom{-}\color{red}{0}&-5&-4\\\phantom{-1}&\downarrow&\color{red}{-3}&\phantom{-5}&\phantom{-4}\\\hline\phantom{-1}&3^{\nearrow}&\color{red}{-3}&\phantom{-5}&\phantom{-4}\end{array}$$$ |
Multiply calculated result by $$${a}$$$: $$${\left(-{3}\right)}\cdot{\left(-{1}\right)}={3}$$$, and write the result into the next column. | $$$\begin{array}{r|llll}\color{red}{-1}&3&\phantom{-}0&-5&-4\\\phantom{-1}&\downarrow&-3&\color{red}{+3}&\phantom{-4}\\\hline\phantom{-1}&3^{\nearrow}&\color{red}{-3^{\nearrow}}&\phantom{-5}&\phantom{-4}\end{array}$$$ |
Add down the column. | $$$\begin{array}{r|llll}-1&3&\phantom{-}0&\color{red}{-5}&-4\\\phantom{-1}&\downarrow&-3&\color{red}{+3}&\phantom{-4}\\\hline\phantom{-1}&3^{\nearrow}&-3^{\nearrow}&\color{red}{-2}&\phantom{-4}\end{array}$$$ |
Multiply calculated result by $$${a}$$$: $$${\left(-{2}\right)}\cdot{\left(-{1}\right)}={2}$$$, and write the result into the next column. | $$$\begin{array}{r|llll}\color{red}{-1}&3&\phantom{-}0&-5&-4\\\phantom{-1}&\downarrow&-3&+3&\color{red}{+2}\\\hline\phantom{-1}&3^{\nearrow}&-3^{\nearrow}&\color{red}{-2^{\nearrow}}&\phantom{-4}\end{array}$$$ |
Add down the column. | $$$\begin{array}{r|llll}-1&3&\phantom{-}0&-5&\color{red}{-4}\\\phantom{-1}&\downarrow&-3&+3&\color{red}{+2}\\\hline\phantom{-1}&3^{\nearrow}&-3^{\nearrow}&-2^{\nearrow}&\color{red}{-2}\end{array}$$$ |
We are done.
Coefficients under the horizontal line (except last) are coefficients of the quotient. Last coefficient is a remainder (it is non-zero).
Thus, quotient is $$${3}{{x}}^{{2}}-{3}{x}-{2}$$$ and remainder is $$$-{2}$$$.
Therefore, we can write, that $$${\left({3}{{x}}^{{3}}-{5}{x}-{4}\right)}={\left({3}{{x}}^{{2}}-{3}{x}-{2}\right)}{\left({x}+{1}\right)}-{2}$$$.
Or $$$\frac{{{3}{{x}}^{{3}}-{5}{x}-{4}}}{{{x}+{1}}}={3}{{x}}^{{2}}-{3}{x}-{2}-\frac{{2}}{{{x}+{1}}}$$$.
Answer: $$$\frac{{{3}{{x}}^{{3}}-{5}{x}-{4}}}{{{x}+{1}}}={3}{{x}}^{{2}}-{3}{x}-{2}-\frac{{2}}{{{x}+{1}}}$$$.
Last example will be solved faster.
Example 3. Find quotient and remainder of $$$\frac{{-{10}+{4}{x}+{{x}}^{{4}}-{3}{{x}}^{{3}}}}{{{x}-{3}}}$$$.
Order degrees of polynomial from greatest to lowest: $$${{x}}^{{4}}-{3}{{x}}^{{3}}+{4}{x}-{10}$$$.
There is missing term, involving $$${{x}}^{{2}}$$$, so we add it with zero coefficient: $$${{x}}^{{4}}-{3}{{x}}^{{3}}+{\color{red}{{{0}{{x}}^{{2}}}}}+{4}{x}-{10}$$$.
Also, $$${a}={3}$$$.
Table for synthetic division is the following:
$$$\begin{array}{r|lllll}3&1&-3&\phantom{-}0&\phantom{-}4&-10\\\phantom{-1}&\downarrow&+3&+0&+0&+12\\\hline\phantom{3}&1^{\nearrow}&\phantom{-}0^{\nearrow}&\phantom{-}0^{\nearrow}&\phantom{-}4^{\nearrow}&\phantom{+1}2\end{array}$$$
So, quotient is $$${1}{{x}}^{{3}}+{0}{{x}}^{{2}}+{0}{x}+{4}={{x}}^{{3}}+{4}$$$ and remainder is $$${2}$$$.
Answer: $$$\frac{{{{x}}^{{4}}-{3}{{x}}^{{2}}+{4}{x}-{10}}}{{{x}-{3}}}={{x}}^{{3}}+{4}+\frac{{2}}{{{x}-{3}}}$$$.
Now, it is time to exercise.
Exercise 1. Use synthetic division to divide $$${{x}}^{{2}}-{2}{x}+{5}$$$ by $$${x}-{3}$$$.
Answer: $$$\frac{{{{x}}^{{2}}-{2}{x}+{5}}}{{{x}-{3}}}={x}+{1}+\frac{{8}}{{{x}-{3}}}$$$.
Exercise 2. Divide the following: $$$\frac{{{{x}}^{{3}}+{8}}}{{{x}+{2}}}$$$.
Answer: $$${{x}}^{{2}}-{2}{x}+{4}$$$.
Exercise 3. Find quotient and remainder of $$$\frac{{{2}{{x}}^{{4}}+{7}{{x}}^{{3}}-{15}{{x}}^{{2}}+{x}+{9}}}{{{x}+{5}}}$$$.
Answer: Quotient is $$${2}{{x}}^{{3}}-{3}{{x}}^{{2}}+{1}$$$ and remainder is $$${4}$$$.