Synthetic Division

Synthetic Division is a method, similar to polynomial long division, but it requires less writing and fewer calculations. However, it can be used only for dividing polynomial in one variable by linear polynomial xa{x}-{a}.

Advantages of this method:

  • less space on a paper
  • fewer calculations
  • calculations are made without variables
  • fewer sign errors, because additions are made instead of subtractions (as in long division)

Disadvantage: it is only used for dividing polynomial by LINEAR polynomial. In other cases it won't work.

Example 1. Divide x27x+10{{x}}^{{2}}-{7}{x}+{10} by x2{x}-{2}, using synthetic division.

First, we need to order degrees of polynomial from greatest to lowest.

It is already done: 1x27x+10{\color{green}{{{1}}}}{{x}}^{{2}}{\color{cyan}{{-{7}}}}{x}{\color{purple}{{+{10}}}}.

Also, a=2{\color{brown}{{{a}={2}}}}.

Next, write coefficients in the special form:

$$$\begin{array}{r|lll}\phantom{2}&x^2&x^1&x^0\\\color{brown}{2}&\color{green}{1}&\color{cyan}{-7}&\color{purple}{10}\\\phantom{1}&\phantom{-7}&\phantom{10}\\\hline
\end{array}$$$

Now, perform the following steps:

Take coefficient of the leading term and carry it down unchanged. 21710271021710\begin{array}{r|lll}2&1&-7&10\\\phantom{2}&\color{red}{\downarrow}&\phantom{-7}&\phantom{10}\\\hline\phantom{2}&\color{red}{1}&\phantom{-7}&\phantom{10}\end{array}
Multiply carry-down value by a{a}: 12=2{1}\cdot{2}={2}, and write result into the next column. $$$\begin{array}{r|lll}\color{red}{2}&1&-7&10\\\phantom{2}&\downarrow&\color{red}{+2}&\phantom{10}\\\hline
\phantom{2}&\color{red}{1^{\nearrow}}&\phantom{-7}&\phantom{10}\end{array}$$$
Add down the column. 217102+21021510\begin{array}{r|lll}2&1&\color{red}{-7}&10\\\phantom{2}&\downarrow&\color{red}{+2}&\phantom{10}\\\hline \phantom{2}&1^{\nearrow}&\color{red}{-5}&\phantom{10}\end{array}
Multiply calculated result by a{a}: (5)2=10{\left(-{5}\right)}\cdot{2}=-{10}, and write the result into the next column. 217102+21021510\begin{array}{r|lll}\color{red}{2}&1&-7&\phantom{-}10\\\phantom{2}&\downarrow&+2&\color{red}{-10}\\\hline \phantom{2}&1^{\nearrow}&\color{red}{-5^{\nearrow}}&\phantom{10}\end{array}
Add down the column. 217102+21021510\begin{array}{r|lll}2&1&-7&\phantom{-}\color{red}{10}\\\phantom{2}&\downarrow&+2&\color{red}{-10}\\\hline \phantom{2}&1^{\nearrow}&-5^{\nearrow}&\phantom{-1}\color{red}{0}\end{array}

We are done.

Coefficients under the horizontal line (except last) are coefficients of the quotient. Last coefficient is a remainder (it is zero).

Thus, quotient is 1x5{1}{x}-{5} or simply x5{x}-{5}.

Answer: x27x+10x2=x5\frac{{{{x}}^{{2}}-{7}{x}+{10}}}{{{x}-{2}}}={x}-{5}.

Sometimes, there will be missing terms.

For example, in x31{{x}}^{{3}}-{1} missing terms are the terms, that involve x2{{x}}^{{2}} and x{x}.

To fix that, just add missing terms with zero coefficient. This doesn't change anything.

Example 2. Divide 5x+3x34x+1\frac{{-{5}{x}+{3}{{x}}^{{3}}-{4}}}{{{x}+{1}}}.

Order degrees of dividend from greatest to lowest: 3x35x4{3}{{x}}^{{3}}-{5}{x}-{4}.

There is missing term, involving x2{{x}}^{{2}}, so we add it with zero coefficient: 3x3+0x25x4{3}{{x}}^{{3}}+{\color{red}{{{0}{{x}}^{{2}}}}}-{5}{x}-{4}.

Since, x+1=x(1){x}+{1}={x}-{\left(-{1}\right)}, then a=1{a}=-{1}.

Next, write coefficients in the special form:

$$$\begin{array}{r|llll}\phantom{-1}&x^3&x^2&x^1&x^0\\-1&3&0&-5&-4\\\phantom{1}&\phantom{-7}&\phantom{10}\\\hline
\end{array}$$$

Now, perform the following steps:

Take coefficient of the leading term and carry it down unchanged. 13054105413054\begin{array}{r|llll}-1&3&0&-5&-4\\\phantom{-1}&\color{red}{\downarrow}&\phantom{0}&\phantom{-5}&\phantom{-4}\\\hline\phantom{-1}&\color{red}{3}&\phantom{0}&\phantom{-5}&\phantom{-4}\end{array}
Multiply carry-down value by a{a}: 3(1)=3{3}\cdot{\left(-{1}\right)}=-{3}, and write result into the next column. 13054135413354\begin{array}{r|llll}\color{red}{-1}&3&\phantom{-}0&-5&-4\\\phantom{-1}&\downarrow&\color{red}{-3}&\phantom{-5}&\phantom{-4}\\\hline\phantom{-1}&\color{red}{3^{\nearrow}}&\phantom{-3}&\phantom{-5}&\phantom{-4}\end{array}
Add down the column. 13054135413354\begin{array}{r|llll}-1&3&\phantom{-}\color{red}{0}&-5&-4\\\phantom{-1}&\downarrow&\color{red}{-3}&\phantom{-5}&\phantom{-4}\\\hline\phantom{-1}&3^{\nearrow}&\color{red}{-3}&\phantom{-5}&\phantom{-4}\end{array}
Multiply calculated result by a{a}: (3)(1)=3{\left(-{3}\right)}\cdot{\left(-{1}\right)}={3}, and write the result into the next column. 1305413+3413354\begin{array}{r|llll}\color{red}{-1}&3&\phantom{-}0&-5&-4\\\phantom{-1}&\downarrow&-3&\color{red}{+3}&\phantom{-4}\\\hline\phantom{-1}&3^{\nearrow}&\color{red}{-3^{\nearrow}}&\phantom{-5}&\phantom{-4}\end{array}
Add down the column. 1305413+3413324\begin{array}{r|llll}-1&3&\phantom{-}0&\color{red}{-5}&-4\\\phantom{-1}&\downarrow&-3&\color{red}{+3}&\phantom{-4}\\\hline\phantom{-1}&3^{\nearrow}&-3^{\nearrow}&\color{red}{-2}&\phantom{-4}\end{array}
Multiply calculated result by a{a}: (2)(1)=2{\left(-{2}\right)}\cdot{\left(-{1}\right)}={2}, and write the result into the next column. 1305413+3+213324\begin{array}{r|llll}\color{red}{-1}&3&\phantom{-}0&-5&-4\\\phantom{-1}&\downarrow&-3&+3&\color{red}{+2}\\\hline\phantom{-1}&3^{\nearrow}&-3^{\nearrow}&\color{red}{-2^{\nearrow}}&\phantom{-4}\end{array}
Add down the column. 1305413+3+213322\begin{array}{r|llll}-1&3&\phantom{-}0&-5&\color{red}{-4}\\\phantom{-1}&\downarrow&-3&+3&\color{red}{+2}\\\hline\phantom{-1}&3^{\nearrow}&-3^{\nearrow}&-2^{\nearrow}&\color{red}{-2}\end{array}

We are done.

Coefficients under the horizontal line (except last) are coefficients of the quotient. Last coefficient is a remainder (it is non-zero).

Thus, quotient is 3x23x2{3}{{x}}^{{2}}-{3}{x}-{2} and remainder is 2-{2}.

Therefore, we can write, that (3x35x4)=(3x23x2)(x+1)2{\left({3}{{x}}^{{3}}-{5}{x}-{4}\right)}={\left({3}{{x}}^{{2}}-{3}{x}-{2}\right)}{\left({x}+{1}\right)}-{2}.

Or 3x35x4x+1=3x23x22x+1\frac{{{3}{{x}}^{{3}}-{5}{x}-{4}}}{{{x}+{1}}}={3}{{x}}^{{2}}-{3}{x}-{2}-\frac{{2}}{{{x}+{1}}}.

Answer: 3x35x4x+1=3x23x22x+1\frac{{{3}{{x}}^{{3}}-{5}{x}-{4}}}{{{x}+{1}}}={3}{{x}}^{{2}}-{3}{x}-{2}-\frac{{2}}{{{x}+{1}}}.

Last example will be solved faster.

Example 3. Find quotient and remainder of 10+4x+x43x3x3\frac{{-{10}+{4}{x}+{{x}}^{{4}}-{3}{{x}}^{{3}}}}{{{x}-{3}}}.

Order degrees of polynomial from greatest to lowest: x43x3+4x10{{x}}^{{4}}-{3}{{x}}^{{3}}+{4}{x}-{10}.

There is missing term, involving x2{{x}}^{{2}}, so we add it with zero coefficient: x43x3+0x2+4x10{{x}}^{{4}}-{3}{{x}}^{{3}}+{\color{red}{{{0}{{x}}^{{2}}}}}+{4}{x}-{10}.

Also, a=3{a}={3}.

Table for synthetic division is the following:

31304101+3+0+0+1231004+12\begin{array}{r|lllll}3&1&-3&\phantom{-}0&\phantom{-}4&-10\\\phantom{-1}&\downarrow&+3&+0&+0&+12\\\hline\phantom{3}&1^{\nearrow}&\phantom{-}0^{\nearrow}&\phantom{-}0^{\nearrow}&\phantom{-}4^{\nearrow}&\phantom{+1}2\end{array}

So, quotient is 1x3+0x2+0x+4=x3+4{1}{{x}}^{{3}}+{0}{{x}}^{{2}}+{0}{x}+{4}={{x}}^{{3}}+{4} and remainder is 2{2}.

Answer: x43x2+4x10x3=x3+4+2x3\frac{{{{x}}^{{4}}-{3}{{x}}^{{2}}+{4}{x}-{10}}}{{{x}-{3}}}={{x}}^{{3}}+{4}+\frac{{2}}{{{x}-{3}}}.

Now, it is time to exercise.

Exercise 1. Use synthetic division to divide x22x+5{{x}}^{{2}}-{2}{x}+{5} by x3{x}-{3}.

Answer: x22x+5x3=x+1+8x3\frac{{{{x}}^{{2}}-{2}{x}+{5}}}{{{x}-{3}}}={x}+{1}+\frac{{8}}{{{x}-{3}}}.

Exercise 2. Divide the following: x3+8x+2\frac{{{{x}}^{{3}}+{8}}}{{{x}+{2}}}.

Answer: x22x+4{{x}}^{{2}}-{2}{x}+{4}.

Exercise 3. Find quotient and remainder of 2x4+7x315x2+x+9x+5\frac{{{2}{{x}}^{{4}}+{7}{{x}}^{{3}}-{15}{{x}}^{{2}}+{x}+{9}}}{{{x}+{5}}}.

Answer: Quotient is 2x33x2+1{2}{{x}}^{{3}}-{3}{{x}}^{{2}}+{1} and remainder is 4{4}.