Category: Quadratic Equations

What is Quadratic Equation

Quadratic equation in one variable is the equation with standard form ax2+bx+c=0\color{purple}{{{a}{{x}}^{{2}}+{b}{x}+{c}={0}}}.

aa, bb and cc are some numbers and xx is variable. Note, that aa can't be zero.

Incomplete Quadratic Equations

Quadratic equation ax2+bx+c=0{a}{{x}}^{{2}}+{b}{x}+{c}={0} is called incomplete, if either b{b} or c{c} (or both) equals 0.

Such equations can be easily solved without advanced methods.

Example 1. Solve x281=0{{x}}^{{2}}-{81}={0}.

Solving Quadratic Equations by Completing the Square

Completing the square is a method for solving quadratic equation.

Before we into the method itself, let's start from a simple example.

Example 1. Solve equation (x3)2=16{{\left({x}-{3}\right)}}^{{2}}={16}.

Quadratic Equation Formula and the Discriminant

Quadratic Equation Formula can be derived from the steps for completing the square (actually, this formula is a general case).

Let's see how to do it.

  1. Start from the equation ax2+bx+c=0{a}{{x}}^{{2}}+{b}{x}+{c}={0}.
  2. Divide both sides by a{a}: x2+bax+ca=0{{x}}^{{2}}+\frac{{b}}{{a}}{x}+\frac{{c}}{{a}}={0}.
  3. Move constant term to the right: x2+bax=ca{{x}}^{{2}}+\frac{{b}}{{a}}{x}=-\frac{{c}}{{a}}.
  4. Add (b2a)2=b24a2{{\left(\frac{{b}}{{2}}{a}\right)}}^{{2}}=\frac{{{b}}^{{2}}}{{{4}{{a}}^{{2}}}} to both sides of the equation: x2+bax+b24a2=ca+b24a2{{x}}^{{2}}+\frac{{b}}{{a}}{x}+\frac{{{b}}^{{2}}}{{{4}{{a}}^{{2}}}}=-\frac{{c}}{{a}}+\frac{{{b}}^{{2}}}{{{4}{{a}}^{{2}}}}.
  5. Rewrite left hand side: (x+b2a)2=ca+b24a2{{\left({x}+\frac{{b}}{{{2}{a}}}\right)}}^{{2}}=-\frac{{c}}{{a}}+\frac{{{b}}^{{2}}}{{{4}{{a}}^{{2}}}}.
  6. Simplify right hand side: ca+b24a2=c4aa4a+b24a2=4ac4a2+b24a2=b24ac4a2-\frac{{c}}{{a}}+\frac{{{b}}^{{2}}}{{{4}{{a}}^{{2}}}}=\frac{{-{c}\cdot{\color{red}{{{4}{a}}}}}}{{{a}\cdot{\color{red}{{{4}{a}}}}}}+\frac{{{b}}^{{2}}}{{{4}{{a}}^{{2}}}}=\frac{{-{4}{a}{c}}}{{{4}{{a}}^{{2}}}}+\frac{{{b}}^{{2}}}{{{4}{{a}}^{{2}}}}=\frac{{{{b}}^{{2}}-{4}{a}{c}}}{{{4}{{a}}^{{2}}}}.
  7. Write the final equation: (x+b2a)2=b24ac4a2{{\left({x}+\frac{{b}}{{{2}{a}}}\right)}}^{{2}}=\frac{{{{b}}^{{2}}-{4}{a}{c}}}{{{4}{{a}}^{{2}}}}.
  8. Solve the equation: x+b2a=b24ac4a2{x}+\frac{{b}}{{{2}{a}}}=\sqrt{{\frac{{{{b}}^{{2}}-{4}{a}{c}}}{{{4}{{a}}^{{2}}}}}} or x+b2a=b24ac4a2{x}+\frac{{b}}{{{2}{a}}}=-\sqrt{{\frac{{{{b}}^{{2}}-{4}{a}{c}}}{{{4}{{a}}^{{2}}}}}}.
  9. Above equations have roots x1=b+b24ac2a{x}_{{1}}=\frac{{-{b}+\sqrt{{{{b}}^{{2}}-{4}{a}{c}}}}}{{{2}{a}}} and x2=bb24ac2a{x}_{{2}}=\frac{{-{b}-\sqrt{{{{b}}^{{2}}-{4}{a}{c}}}}}{{{2}{a}}}.
  10. We can write it even more compactly: x1,2=b±b24ac2a{x}_{{{1},{2}}}=\frac{{-{b}\pm\sqrt{{{{b}}^{{2}}-{4}{a}{c}}}}}{{{2}{a}}}.

Expression b24ac{{b}}^{{2}}-{4}{a}{c} is called the discriminant of the quadratic equation.

Viet Theorem

Viet Theorem. If quadratic equation ax2+bx+c=0{a}{{x}}^{{2}}+{b}{x}+{c}={0} (reduced form is x2+ba+ca=0{{x}}^{{2}}+\frac{{b}}{{a}}+\frac{{c}}{{a}}={0}) has roots p{p} and q{q}, then p+q=ba{\color{green}{{{p}+{q}=-\frac{{b}}{{a}}}}}, {\color{ma\genta}{{{p}{q}=\frac{{c}}{{a}}}}}, i.e. sum of the roots equals second coefficient, taken with opposite sign, and product of roots equals constant.