Tangent Line in Polar Coordinates

Let's see how to derive equation of tangent line when we are given equation of curve r=f(θ){r}={f{{\left(\theta\right)}}} in polar coordinates.

We will proceed in the same fashion as with tangent lines to parametric curves, because polar coordinates in some sense similar to parametric curves.

We know that x=rcos(θ){x}={r}{\cos{{\left(\theta\right)}}} and y=rsin(θ){y}={r}{\sin{{\left(\theta\right)}}}.

Since we are given that r=f(θ){r}={f{{\left(\theta\right)}}} we should treat r{r} as a function of θ\theta.

To find slope of tangent line, we need to find dydx\frac{{{d}{y}}}{{{d}{x}}} but in terms of r{r} and θ\theta. This can be easily done with chain rule:

dydx=dydθdθdx=dydθ1dxdθ\frac{{{d}{y}}}{{{d}{x}}}=\frac{{{d}{y}}}{{{d}\theta}}\cdot\frac{{{d}\theta}}{{{d}{x}}}=\frac{{{d}{y}}}{{{d}\theta}}\cdot\frac{{1}}{{\frac{{{d}{x}}}{{{d}\theta}}}}.

We have that dydθ=drdθsin(θ)+rcos(θ)\frac{{{d}{y}}}{{{d}\theta}}=\frac{{{d}{r}}}{{{d}\theta}}{\sin{{\left(\theta\right)}}}+{r}{\cos{{\left(\theta\right)}}} and dxdθ=drdθcos(θ)rsin(θ)\frac{{{d}{x}}}{{{d}\theta}}=\frac{{{d}{r}}}{{{d}\theta}}{\cos{{\left(\theta\right)}}}-{r}{\sin{{\left(\theta\right)}}}.

So, we obtained following fact.

Fact. Slope of tangent line in polar coordinates is dydx=drdθsin(θ)+rcos(θ)drdθcos(θ)rsin(θ)\frac{{{d}{y}}}{{{d}{x}}}=\frac{{\frac{{{d}{r}}}{{{d}\theta}}{\sin{{\left(\theta\right)}}}+{r}{\cos{{\left(\theta\right)}}}}}{{\frac{{{d}{r}}}{{{d}\theta}}{\cos{{\left(\theta\right)}}}-{r}{\sin{{\left(\theta\right)}}}}}.

Example. Find equation of tangent line to r=1+2cos(θ){r}={1}+{2}{\cos{{\left(\theta\right)}}} at θ=π4\theta=\frac{\pi}{{4}}.

tangent line to curve in polar coordinatesWe have that drdθ=2sin(θ)\frac{{{d}{r}}}{{{d}\theta}}=-{2}{\sin{{\left(\theta\right)}}}, so

dydx=2sin(θ)sin(θ)+(1+2cos(θ))cos(θ)2sin(θ)cos(θ)(1+2cos(θ))sin(θ)=\frac{{{d}{y}}}{{{d}{x}}}=\frac{{-{2}{\sin{{\left(\theta\right)}}}{\sin{{\left(\theta\right)}}}+{\left({1}+{2}{\cos{{\left(\theta\right)}}}\right)}{\cos{{\left(\theta\right)}}}}}{{-{2}{\sin{{\left(\theta\right)}}}{\cos{{\left(\theta\right)}}}-{\left({1}+{2}{\cos{{\left(\theta\right)}}}\right)}{\sin{{\left(\theta\right)}}}}}=

=cos(θ)+2cos(2θ)sin(θ)2sin(2θ)=\frac{{{\cos{{\left(\theta\right)}}}+{2}{\cos{{\left({2}\theta\right)}}}}}{{-{\sin{{\left(\theta\right)}}}-{2}{\sin{{\left({2}\theta\right)}}}}}.

So, slope of tangent line at point θ=π4\theta=\frac{\pi}{{4}} is m=dydxθ=π4=cos(π4)+2cos(π2)sin(π4)2sin(π2)=17(122){m}=\frac{{{d}{y}}}{{{d}{x}}}{\mid}_{{\theta=\frac{\pi}{{4}}}}=\frac{{{\cos{{\left(\frac{\pi}{{4}}\right)}}}+{2}{\cos{{\left(\frac{\pi}{{2}}\right)}}}}}{{-{\sin{{\left(\frac{\pi}{{4}}\right)}}}-{2}{\sin{{\left(\frac{\pi}{{2}}\right)}}}}}=\frac{{1}}{{7}}{\left({1}-{2}\sqrt{{{2}}}\right)}.

Now we need corresponding x{x} and y{y} coordinates when θ=π4\theta=\frac{\pi}{{4}}:

x=rcos(θ)=(1+2cos(θ))cos(θ)=(1+2cos(π4))cos(π4)=1+22{x}={r}{\cos{{\left(\theta\right)}}}={\left({1}+{2}{\cos{{\left(\theta\right)}}}\right)}{\cos{{\left(\theta\right)}}}={\left({1}+{2}{\cos{{\left(\frac{\pi}{{4}}\right)}}}\right)}{\cos{{\left(\frac{\pi}{{4}}\right)}}}=\frac{{{1}+\sqrt{{{2}}}}}{\sqrt{{{2}}}}.

y=rsin(θ)=(1+2cos(θ))sin(θ)=(1+2cos(π4))sin(π4)=1+22{y}={r}{\sin{{\left(\theta\right)}}}={\left({1}+{2}{\cos{{\left(\theta\right)}}}\right)}{\sin{{\left(\theta\right)}}}={\left({1}+{2}{\cos{{\left(\frac{\pi}{{4}}\right)}}}\right)}{\sin{{\left(\frac{\pi}{{4}}\right)}}}=\frac{{{1}+\sqrt{{{2}}}}}{\sqrt{{{2}}}}.

So, equation of tangent line that passes through point θ=π4\theta=\frac{\pi}{{4}} is y=17(122)(x1+22)+1+22{y}=\frac{{1}}{{7}}{\left({1}-{2}\sqrt{{{2}}}\right)}{\left({x}-\frac{{{1}+\sqrt{{{2}}}}}{\sqrt{{{2}}}}\right)}+\frac{{{1}+\sqrt{{{2}}}}}{\sqrt{{{2}}}} or approximately y=0.2612x+2.153{y}=-{0.2612}{x}+{2.153}.

As with parametric curves there are curves that have several tangent line at one point. For example, in above example, such point is (0,0). The corresponding value(s) of θ\theta we can find by solving equation 1+2cos(θ)=0{1}+{2}{\cos{{\left(\theta\right)}}}={0}. This gives two solutions on interval [0,2π]{\left[{0},{2}\pi\right]}: 2π3\frac{{{2}\pi}}{{3}} and 4π3\frac{{{4}\pi}}{{3}}, so there will be two tangent lines at (0,0).

Similarly to parametric curves, curve in polar coordinates has

  • horizontal tangent when dydθ=0\frac{{{d}{y}}}{{{d}\theta}}={0} (provided that dxdθ0\frac{{{d}{x}}}{{{d}\theta}}\ne{0}).
  • vertical tangent when dxdθ=0\frac{{{d}{x}}}{{{d}\theta}}={0} (provided that dydθ0\frac{{{d}{y}}}{{{d}\theta}}\ne{0}).