Hyperbolic Functions

Hyperbolic cosine is y=cosh(x)=ex+ex2{\color{red}{{{y}={\cosh{{\left({x}\right)}}}=\frac{{{{e}}^{{x}}+{{e}}^{{-{x}}}}}{{2}}}}}.hyperbolic sine and hyperbolic cotangent

Hyperbolic sine is y=sinh(x)=exex2{\color{blue}{{{y}={\sinh{{\left({x}\right)}}}=\frac{{{{e}}^{{x}}-{{e}}^{{-{x}}}}}{{2}}}}}.

Hyperbolic tangent is y=tanh(x)=sinh(x)cosh(x)=exexex+ex{\color{green}{{{y}={\tanh{{\left({x}\right)}}}=\frac{{{\sinh{{\left({x}\right)}}}}}{{{\cosh{{\left({x}\right)}}}}}=\frac{{{{e}}^{{x}}-{{e}}^{{-{x}}}}}{{{{e}}^{{x}}+{{e}}^{{-{x}}}}}}}}.

Hyperbolic cotangent is y=coth(x)=cosh(x)sinh(x)=ex+exexexy=\coth\left(x\right)=\frac{\cosh\left(x\right)}{\sinh\left(x\right)}=\frac{e^{x}+e^{-x}}{e^{x}-e^{-x}}.

Hyperbolic secant is y=sech(x)=1cosh(x)=2ex+ex{y}=\operatorname{sech}{\left({x}\right)}=\frac{{1}}{{{\cosh{{\left({x}\right)}}}}}=\frac{{2}}{{{{e}}^{{x}}+{{e}}^{{-{x}}}}} .

Hyperbolic cosecant is y=csch(x)=1sinh(x)=2exex{y}={\operatorname{csch}{{\left({x}\right)}}}=\frac{{1}}{{{\sinh{{\left({x}\right)}}}}}=\frac{{2}}{{{{e}}^{{x}}-{{e}}^{{-{x}}}}}.

There is some similarity between hyperbolic functions and trigonometric.

hyperbolic cosine and hyperbolic tangentDomain of hyperbolic functions is (,){\left(-\infty,\infty\right)}, except for function y=coth(x){y}={\coth{{\left({x}\right)}}} which is undefined when x=0{x}={0}.

Formulas that hold for any x{x} and y{y}:

  1. cosh(x±y)=cosh(x)cosh(y)±sinh(x)sinh(y){\cosh{{\left({x}\pm{y}\right)}}}={\cosh{{\left({x}\right)}}}{\cosh{{\left({y}\right)}}}\pm{\sinh{{\left({x}\right)}}}{\sinh{{\left({y}\right)}}}.
  2. sinh(x±y)=sinh(x)cosh(y)±cosh(x)sinh(y){\sinh{{\left({x}\pm{y}\right)}}}={\sinh{{\left({x}\right)}}}{\cosh{{\left({y}\right)}}}\pm{\cosh{{\left({x}\right)}}}{\sinh{{\left({y}\right)}}}.
  3. cosh2(x)sinh2(x)=1{{\cosh}}^{{2}}{\left({x}\right)}-{{\sinh}}^{{2}}{\left({x}\right)}={1}.
  4. cosh(2x)=cosh2(x)+sinh2(x){\cosh{{\left({2}{x}\right)}}}={{\cosh}}^{{2}}{\left({x}\right)}+{{\sinh}}^{{2}}{\left({x}\right)}.
  5. sinh(2x)=2sinh(x)cosh(x){\sinh{{\left({2}{x}\right)}}}={2}{\sinh{{\left({x}\right)}}}{\cosh{{\left({x}\right)}}}.

This formulas can be easily proved using definitions of hyperbolic functions.