Hyperbolic cosine is y = cosh ( x ) = e x + e − x 2 {y}={\cosh{{\left({x}\right)}}}=\frac{{{{e}}^{{x}}+{{e}}^{{-{x}}}}}{{2}} y = cosh ( x ) = 2 e x + e − x .
This function is not one-to-one, so there is no unique inverse for this function. However, if we take function on interval ( 0 , ∞ ) {\left({0},\infty\right)} ( 0 , ∞ ) then it will have unique inverse.
To find this inverse we use algorithm of finding inverse:
Let y = e x + e − x 2 {y}=\frac{{{{e}}^{{x}}+{{e}}^{{-{x}}}}}{{2}} y = 2 e x + e − x .
Now, interchange x {x} x and y {y} y : x = e y + e − y 2 {x}=\frac{{{{e}}^{{y}}+{{e}}^{{-{y}}}}}{{2}} x = 2 e y + e − y .
Finally, solve for y: e y + e − y = 2 x {{e}}^{{y}}+{{e}}^{{-{y}}}={2}{x} e y + e − y = 2 x .
Multiply both sides of equation by e y {{e}}^{{y}} e y : e 2 y + 1 = 2 x e y {{e}}^{{{2}{y}}}+{1}={2}{x}{{e}}^{{y}} e 2 y + 1 = 2 x e y .
Now, make substitution e y = t {{e}}^{{y}}={t} e y = t then t 2 − 2 x t + 1 = 0 {{t}}^{{2}}-{2}{x}{t}+{1}={0} t 2 − 2 x t + 1 = 0 . This is quadratic equation.
It has two solutions: t 1 = x + x 2 − 1 {t}_{{1}}={x}+\sqrt{{{{x}}^{{2}}-{1}}} t 1 = x + x 2 − 1 and t 2 = x − x 2 − 1 {t}_{{2}}={x}-\sqrt{{{{x}}^{{2}}-{1}}} t 2 = x − x 2 − 1 .
So, either e y = x + x 2 − 1 {{e}}^{{y}}={x}+\sqrt{{{{x}}^{{2}}-{1}}} e y = x + x 2 − 1 or e y = x − x 2 − 1 {{e}}^{{y}}={x}-\sqrt{{{{x}}^{{2}}-{1}}} e y = x − x 2 − 1 .
Since we took x > 0 {x}>{0} x > 0 and interchanged x {x} x and y {y} y then we require y > 0 {y}>{0} y > 0 , so only e y = x + x 2 − 1 {{e}}^{{y}}={x}+\sqrt{{{{x}}^{{2}}-{1}}} e y = x + x 2 − 1 is applicable. From this we have that y = ln ( x + x 2 − 1 ) {y}={\ln{{\left({x}+\sqrt{{{{x}}^{{2}}-{1}}}\right)}}} y = ln ( x + x 2 − 1 ) .
Inverse Hyperbolic Cosine. y = arccosh ( x ) = cosh − 1 ( x ) = ln ( x + x 2 − 1 ) {y}=\text{arccosh}{\left({x}\right)}={{\cosh}}^{{-{1}}}{\left({x}\right)}={\ln{{\left({x}+\sqrt{{{{x}}^{{2}}-{1}}}\right)}}} y = arccosh ( x ) = cosh − 1 ( x ) = ln ( x + x 2 − 1 ) .
Hyperbolic sine is y = sinh ( x ) = e x − e − x 2 {y}={\sinh{{\left({x}\right)}}}=\frac{{{{e}}^{{x}}-{{e}}^{{-{x}}}}}{{2}} y = sinh ( x ) = 2 e x − e − x .
This function is one-to-one, therefore it has unique inverse.
To find this inverse we use algorithm of finding inverse:
Let y = e x − e − x 2 {y}=\frac{{{{e}}^{{x}}-{{e}}^{{-{x}}}}}{{2}} y = 2 e x − e − x .
Now, interchange x {x} x and y {y} y : x = e y − e − y 2 {x}=\frac{{{{e}}^{{y}}-{{e}}^{{-{y}}}}}{{2}} x = 2 e y − e − y .
Finally, solve for y: e y − e − y = 2 x {{e}}^{{y}}-{{e}}^{{-{y}}}={2}{x} e y − e − y = 2 x .
Multiply both sides of equation by e y {{e}}^{{y}} e y : e 2 y − 1 = 2 x e y {{e}}^{{{2}{y}}}-{1}={2}{x}{{e}}^{{y}} e 2 y − 1 = 2 x e y .
Now, make substitution e y = t {{e}}^{{y}}={t} e y = t then t 2 − 2 x t − 1 = 0 {{t}}^{{2}}-{2}{x}{t}-{1}={0} t 2 − 2 x t − 1 = 0 . This is quadratic equation.
It has two solutions: t 1 = x + x 2 + 1 {t}_{{1}}={x}+\sqrt{{{{x}}^{{2}}+{1}}} t 1 = x + x 2 + 1 and t 2 = x − x 2 + 1 {t}_{{2}}={x}-\sqrt{{{{x}}^{{2}}+{1}}} t 2 = x − x 2 + 1 .
But t 2 < 0 {t}_{{2}}<{0} t 2 < 0 for all x {x} x and t = e y {t}={{e}}^{{y}} t = e y should be positive, therefore, t 1 = x + x 2 + 1 {t}_{{1}}={x}+\sqrt{{{{x}}^{{2}}+{1}}} t 1 = x + x 2 + 1 .
This gives us that e y = x + x 2 + 1 {{e}}^{{y}}={x}+\sqrt{{{{x}}^{{2}}+{1}}} e y = x + x 2 + 1 . From this we have that y = ln ( x + x 2 + 1 ) {y}={\ln{{\left({x}+\sqrt{{{{x}}^{{2}}+{1}}}\right)}}} y = ln ( x + x 2 + 1 ) .
Inverse Hyperbolic Sine. y = arcsinh ( x ) = sinh − 1 ( x ) = ln ( x + x 2 + 1 ) {y}=\text{arcsinh}{\left({x}\right)}={{\sinh}}^{{-{1}}}{\left({x}\right)}={\ln{{\left({x}+\sqrt{{{{x}}^{{2}}+{1}}}\right)}}} y = arcsinh ( x ) = sinh − 1 ( x ) = ln ( x + x 2 + 1 ) .
Hyperbolic tangent is y = tanh ( x ) = e x − e − x e x + e − x {y}={\tanh{{\left({x}\right)}}}=\frac{{{{e}}^{{x}}-{{e}}^{{-{x}}}}}{{{{e}}^{{x}}+{{e}}^{{-{x}}}}} y = tanh ( x ) = e x + e − x e x − e − x .
This function is one-to-one, therefore it has unique inverse.
To find this inverse we use algorithm of finding inverse:
Let y = e x − e − x e x + e − x {y}=\frac{{{{e}}^{{x}}-{{e}}^{{-{x}}}}}{{{{e}}^{{x}}+{{e}}^{{-{x}}}}} y = e x + e − x e x − e − x .
Now, interchange x {x} x and y {y} y : x = e y − e − y e y + e − y {x}=\frac{{{{e}}^{{y}}-{{e}}^{{-{y}}}}}{{{{e}}^{{y}}+{{e}}^{{-{y}}}}} x = e y + e − y e y − e − y .
Finally, solve for y: e y − e − y = x ( e y + e − y ) {{e}}^{{y}}-{{e}}^{{-{y}}}={x}{\left({{e}}^{{y}}+{{e}}^{{-{y}}}\right)} e y − e − y = x ( e y + e − y ) .
Multiply both sides of equation by e y {{e}}^{{y}} e y : e 2 y − 1 = x ( e 2 y + 1 ) {{e}}^{{{2}{y}}}-{1}={x}{\left({{e}}^{{{2}{y}}}+{1}\right)} e 2 y − 1 = x ( e 2 y + 1 ) .
From this we have that e 2 y = 1 + x 1 − x {{e}}^{{{2}{y}}}=\frac{{{1}+{x}}}{{{1}-{x}}} e 2 y = 1 − x 1 + x or y = 1 2 ln ( 1 + x 1 − x ) {y}=\frac{{1}}{{2}}{\ln{{\left(\frac{{{1}+{x}}}{{{1}-{x}}}\right)}}} y = 2 1 ln ( 1 − x 1 + x ) .
Inverse Hyperbolic Tangent. y = arctanh ( x ) = tanh − 1 ( x ) = 1 2 ln ( 1 + x 1 − x ) {y}=\text{arctanh}{\left({x}\right)}={{\tanh}}^{{-{1}}}{\left({x}\right)}=\frac{{1}}{{2}}{\ln{{\left(\frac{{{1}+{x}}}{{{1}-{x}}}\right)}}} y = arctanh ( x ) = tanh − 1 ( x ) = 2 1 ln ( 1 − x 1 + x ) .
Hyperbolic cotangent is y = coth ( x ) = e x + e − x e x − e − x {y}={\coth{{\left({x}\right)}}}=\frac{{{{e}}^{{x}}+{{e}}^{{-{x}}}}}{{{{e}}^{{x}}-{{e}}^{{-{x}}}}} y = coth ( x ) = e x − e − x e x + e − x .
This function is one-to-one, therefore it has unique inverse.
To find this inverse we use algorithm of finding inverse:
Let y = e x + e − x e x − e − x {y}=\frac{{{{e}}^{{x}}+{{e}}^{{-{x}}}}}{{{{e}}^{{x}}-{{e}}^{{-{x}}}}} y = e x − e − x e x + e − x .
Now, interchange x {x} x and y {y} y : x = e y + e − y e y − e − y {x}=\frac{{{{e}}^{{y}}+{{e}}^{{-{y}}}}}{{{{e}}^{{y}}-{{e}}^{{-{y}}}}} x = e y − e − y e y + e − y .
Finally, solve for y {y} y : e y + e − y = x ( e y − e − y ) {{e}}^{{y}}+{{e}}^{{-{y}}}={x}{\left({{e}}^{{y}}-{{e}}^{{-{y}}}\right)} e y + e − y = x ( e y − e − y ) .
Multiply both sides of equation by e y {{e}}^{{y}} e y : e 2 y + 1 = x ( e 2 y − 1 ) {{e}}^{{{2}{y}}}+{1}={x}{\left({{e}}^{{{2}{y}}}-{1}\right)} e 2 y + 1 = x ( e 2 y − 1 ) .
From this we have that e 2 y = x − 1 x + 1 {{e}}^{{{2}{y}}}=\frac{{{x}-{1}}}{{{x}+{1}}} e 2 y = x + 1 x − 1 or y = 1 2 ln ( x − 1 x + 1 ) {y}=\frac{{1}}{{2}}{\ln{{\left(\frac{{{x}-{1}}}{{{x}+{1}}}\right)}}} y = 2 1 ln ( x + 1 x − 1 ) .
Inverse Hyperbolic Cotangent. y = arccoth ( x ) = coth − 1 ( x ) = 1 2 ln ( x − 1 x + 1 ) {y}={\operatorname{arccoth}{{\left({x}\right)}}}={{\coth}}^{{-{1}}}{\left({x}\right)}=\frac{{1}}{{2}}{\ln{{\left(\frac{{{x}-{1}}}{{{x}+{1}}}\right)}}} y = arccoth ( x ) = coth − 1 ( x ) = 2 1 ln ( x + 1 x − 1 ) .