Inverse Hyperbolic Functions

Hyperbolic cosine is y=cosh(x)=ex+ex2{y}={\cosh{{\left({x}\right)}}}=\frac{{{{e}}^{{x}}+{{e}}^{{-{x}}}}}{{2}}.

This function is not one-to-one, so there is no unique inverse for this function. However, if we take function on interval (0,){\left({0},\infty\right)} then it will have unique inverse.

To find this inverse we use algorithm of finding inverse:

Let y=ex+ex2{y}=\frac{{{{e}}^{{x}}+{{e}}^{{-{x}}}}}{{2}}.

Now, interchange x{x} and y{y}: x=ey+ey2{x}=\frac{{{{e}}^{{y}}+{{e}}^{{-{y}}}}}{{2}}.

Finally, solve for y: ey+ey=2x{{e}}^{{y}}+{{e}}^{{-{y}}}={2}{x}.

Multiply both sides of equation by ey{{e}}^{{y}} : e2y+1=2xey{{e}}^{{{2}{y}}}+{1}={2}{x}{{e}}^{{y}}.

Now, make substitution ey=t{{e}}^{{y}}={t} then t22xt+1=0{{t}}^{{2}}-{2}{x}{t}+{1}={0}. This is quadratic equation.

It has two solutions: t1=x+x21{t}_{{1}}={x}+\sqrt{{{{x}}^{{2}}-{1}}} and t2=xx21{t}_{{2}}={x}-\sqrt{{{{x}}^{{2}}-{1}}}.

So, either ey=x+x21{{e}}^{{y}}={x}+\sqrt{{{{x}}^{{2}}-{1}}} or ey=xx21{{e}}^{{y}}={x}-\sqrt{{{{x}}^{{2}}-{1}}}.

Since we took x>0{x}>{0} and interchanged x{x} and y{y} then we require y>0{y}>{0}, so only ey=x+x21{{e}}^{{y}}={x}+\sqrt{{{{x}}^{{2}}-{1}}} is applicable. From this we have that y=ln(x+x21){y}={\ln{{\left({x}+\sqrt{{{{x}}^{{2}}-{1}}}\right)}}}.

Inverse Hyperbolic Cosine. y=arccosh(x)=cosh1(x)=ln(x+x21){y}=\text{arccosh}{\left({x}\right)}={{\cosh}}^{{-{1}}}{\left({x}\right)}={\ln{{\left({x}+\sqrt{{{{x}}^{{2}}-{1}}}\right)}}}.

Hyperbolic sine is y=sinh(x)=exex2{y}={\sinh{{\left({x}\right)}}}=\frac{{{{e}}^{{x}}-{{e}}^{{-{x}}}}}{{2}}.

This function is one-to-one, therefore it has unique inverse.

To find this inverse we use algorithm of finding inverse:

Let y=exex2{y}=\frac{{{{e}}^{{x}}-{{e}}^{{-{x}}}}}{{2}}.

Now, interchange x{x} and y{y}: x=eyey2{x}=\frac{{{{e}}^{{y}}-{{e}}^{{-{y}}}}}{{2}}.

Finally, solve for y: eyey=2x{{e}}^{{y}}-{{e}}^{{-{y}}}={2}{x}.

Multiply both sides of equation by ey{{e}}^{{y}} : e2y1=2xey{{e}}^{{{2}{y}}}-{1}={2}{x}{{e}}^{{y}}.

Now, make substitution ey=t{{e}}^{{y}}={t} then t22xt1=0{{t}}^{{2}}-{2}{x}{t}-{1}={0}. This is quadratic equation.

It has two solutions: t1=x+x2+1{t}_{{1}}={x}+\sqrt{{{{x}}^{{2}}+{1}}} and t2=xx2+1{t}_{{2}}={x}-\sqrt{{{{x}}^{{2}}+{1}}}.

But t2<0{t}_{{2}}<{0} for all x{x} and t=ey{t}={{e}}^{{y}} should be positive, therefore, t1=x+x2+1{t}_{{1}}={x}+\sqrt{{{{x}}^{{2}}+{1}}}.

This gives us that ey=x+x2+1{{e}}^{{y}}={x}+\sqrt{{{{x}}^{{2}}+{1}}}. From this we have that y=ln(x+x2+1){y}={\ln{{\left({x}+\sqrt{{{{x}}^{{2}}+{1}}}\right)}}}.

Inverse Hyperbolic Sine. y=arcsinh(x)=sinh1(x)=ln(x+x2+1){y}=\text{arcsinh}{\left({x}\right)}={{\sinh}}^{{-{1}}}{\left({x}\right)}={\ln{{\left({x}+\sqrt{{{{x}}^{{2}}+{1}}}\right)}}}.

Hyperbolic tangent is y=tanh(x)=exexex+ex{y}={\tanh{{\left({x}\right)}}}=\frac{{{{e}}^{{x}}-{{e}}^{{-{x}}}}}{{{{e}}^{{x}}+{{e}}^{{-{x}}}}}.

This function is one-to-one, therefore it has unique inverse.

To find this inverse we use algorithm of finding inverse:

Let y=exexex+ex{y}=\frac{{{{e}}^{{x}}-{{e}}^{{-{x}}}}}{{{{e}}^{{x}}+{{e}}^{{-{x}}}}}.

Now, interchange x{x} and y{y}: x=eyeyey+ey{x}=\frac{{{{e}}^{{y}}-{{e}}^{{-{y}}}}}{{{{e}}^{{y}}+{{e}}^{{-{y}}}}}.

Finally, solve for y: eyey=x(ey+ey){{e}}^{{y}}-{{e}}^{{-{y}}}={x}{\left({{e}}^{{y}}+{{e}}^{{-{y}}}\right)}.

Multiply both sides of equation by ey{{e}}^{{y}} : e2y1=x(e2y+1){{e}}^{{{2}{y}}}-{1}={x}{\left({{e}}^{{{2}{y}}}+{1}\right)}.

From this we have that e2y=1+x1x{{e}}^{{{2}{y}}}=\frac{{{1}+{x}}}{{{1}-{x}}} or y=12ln(1+x1x){y}=\frac{{1}}{{2}}{\ln{{\left(\frac{{{1}+{x}}}{{{1}-{x}}}\right)}}}.

Inverse Hyperbolic Tangent. y=arctanh(x)=tanh1(x)=12ln(1+x1x){y}=\text{arctanh}{\left({x}\right)}={{\tanh}}^{{-{1}}}{\left({x}\right)}=\frac{{1}}{{2}}{\ln{{\left(\frac{{{1}+{x}}}{{{1}-{x}}}\right)}}}.

Hyperbolic cotangent is y=coth(x)=ex+exexex{y}={\coth{{\left({x}\right)}}}=\frac{{{{e}}^{{x}}+{{e}}^{{-{x}}}}}{{{{e}}^{{x}}-{{e}}^{{-{x}}}}}.

This function is one-to-one, therefore it has unique inverse.

To find this inverse we use algorithm of finding inverse:

Let y=ex+exexex{y}=\frac{{{{e}}^{{x}}+{{e}}^{{-{x}}}}}{{{{e}}^{{x}}-{{e}}^{{-{x}}}}}.

Now, interchange x{x} and y{y}: x=ey+eyeyey{x}=\frac{{{{e}}^{{y}}+{{e}}^{{-{y}}}}}{{{{e}}^{{y}}-{{e}}^{{-{y}}}}}.

Finally, solve for y{y}: ey+ey=x(eyey){{e}}^{{y}}+{{e}}^{{-{y}}}={x}{\left({{e}}^{{y}}-{{e}}^{{-{y}}}\right)}.

Multiply both sides of equation by ey{{e}}^{{y}} : e2y+1=x(e2y1){{e}}^{{{2}{y}}}+{1}={x}{\left({{e}}^{{{2}{y}}}-{1}\right)}.

From this we have that e2y=x1x+1{{e}}^{{{2}{y}}}=\frac{{{x}-{1}}}{{{x}+{1}}} or y=12ln(x1x+1){y}=\frac{{1}}{{2}}{\ln{{\left(\frac{{{x}-{1}}}{{{x}+{1}}}\right)}}}.

Inverse Hyperbolic Cotangent. y=arccoth(x)=coth1(x)=12ln(x1x+1){y}={\operatorname{arccoth}{{\left({x}\right)}}}={{\coth}}^{{-{1}}}{\left({x}\right)}=\frac{{1}}{{2}}{\ln{{\left(\frac{{{x}-{1}}}{{{x}+{1}}}\right)}}}.