Logarithmic Functions

logarithmic functionSince exponential function y=ax{y}={{a}}^{{x}} is monotonic (i.e. either increasing or decreasing) then it passes horizontal line test. Thus, it has inverse function. To find this function we use algorithm for finding inverse.

Interchange x{x} and y{y}: x=ay{x}={{a}}^{{y}}. To write this in terms of y{y} we introduce new record: y=loga(x){y}={\log}_{{a}}{\left({x}\right)}.

So, x=ay{x}={{a}}^{{y}} is equivalent to y=loga(x){y}={\log}_{{a}}{\left({x}\right)}. For example, log2(8)=3{\log}_{{2}}{\left({8}\right)}={3} because 23=8{{2}}^{{3}}={8}.

Function y=loga(x){y}={\log}_{{a}}{\left({x}\right)} is called logarithmic function. Its domain is (0,){\left({0},\infty\right)} and range is (,){\left(-\infty,\infty\right)}.

Since y=loga(x){y}={\log}_{{a}}{\left({x}\right)} is inverse of y=ax{y}={{a}}^{{x}} then their graphs are symmetric about line y=x{y}={x}.

Properties of Logarithms

If x{x} and y{y} are positive numbers then

  1. aloga(x)=x{{a}}^{{{\log}_{{a}}{\left({x}\right)}}}={x}, for any x{x},
  2. loga(ax)=x{\log}_{{a}}{\left({{a}}^{{x}}\right)}={x}, for x>0{x}>{0},
  3. loga(xy)=loga(x)+loga(y){\log}_{{a}}{\left({x}{y}\right)}={\log}_{{a}}{\left({x}\right)}+{\log}_{{a}}{\left({y}\right)},
  4. loga(xy)=loga(x)loga(y){\log}_{{a}}{\left(\frac{{x}}{{y}}\right)}={\log}_{{a}}{\left({x}\right)}-{\log}_{{a}}{\left({y}\right)},
  5. loga(xb)=bloga(x){\log}_{{a}}{\left({{x}}^{{b}}\right)}={b}{\log}_{{a}}{\left({x}\right)} (where b{b} is any real number)

First two properties follow from definition of inverse, last three properties follow from corresponding properties of exponentials.

Example 1. Evaluate log2(3)+log2(20)log2(15){\log}_{{2}}{\left({3}\right)}+{\log}_{{2}}{\left({20}\right)}-{\log}_{{2}}{\left({15}\right)}.

Using properties of logarithms we can write that log2(3)+log2(20)log2(15)=log2(320)log2(15)=log2(60)log2(15)=log2(6015)=log2(4)=2{\log}_{{2}}{\left({3}\right)}+{\log}_{{2}}{\left({20}\right)}-{\log}_{{2}}{\left({15}\right)}={\log}_{{2}}{\left({3}\cdot{20}\right)}-{\log}_{{2}}{\left({15}\right)}={\log}_{{2}}{\left({60}\right)}-{\log}_{{2}}{\left({15}\right)}={\log}_{{2}}{\left(\frac{{60}}{{15}}\right)}={\log}_{{2}}{\left({4}\right)}={2}

because 22=4{{2}}^{{2}}={4}.

Natural logarithm

Of all possible bases a{a} the most convenient when working with logarithms is base e{e} (number e2.718{e}\approx{2.718}). We will talk why is this so in next notes.

So, logarithm with base e{e} is called natural logarithm and is denoted as ln(x){\ln{{\left({x}\right)}}}: loge(x)=ln(x){\log}_{{e}}{\left({x}\right)}={\ln{{\left({x}\right)}}}.

From definition of inverse it follows that ln(x)=y  ey=x{\ln{{\left({x}\right)}}}={y}\ \Leftrightarrow\ {{e}}^{{y}}={x}.

Also, ln(ex)=x{\ln{{\left({{e}}^{{x}}\right)}}}={x} for x(, ){x}\in{\left(-\infty,\ \infty\right)} and eln(x)=x{{e}}^{{{\ln{{\left({x}\right)}}}}}={x} for x>0{x}>{0}.

In particular ln(e)=1{\ln{{\left({e}\right)}}}={1}.

Example 2. Solve equation e3x+5=4{{e}}^{{{3}{x}+{5}}}={4}.

Take natural logaritms of both sides: ln(e3x+5)=ln(4){\ln{{\left({{e}}^{{{3}{x}+{5}}}\right)}}}={\ln{{\left({4}\right)}}} or 3x+5=ln(4){3}{x}+{5}={\ln{{\left({4}\right)}}}, so x=ln(4)53{x}=\frac{{{\ln{{\left({4}\right)}}}-{5}}}{{3}}.

Example 3. Solve ln(x3+1)=2{\ln{{\left({{x}}^{{3}}+{1}\right)}}}={2}.

Apply exponential function to both sides of equation: eln(x3+1)=e2{{e}}^{{{\ln{{\left({{x}}^{{3}}+{1}\right)}}}}}={{e}}^{{2}} or x3+1=e2{{x}}^{{3}}+{1}={{e}}^{{2}}.

So, x=e213{x}={\sqrt[{{3}}]{{{{e}}^{{2}}-{1}}}}.

Example 4. Simplify 2ln(x)13ln(y){2}{\ln{{\left({x}\right)}}}-\frac{{1}}{{3}}{\ln{{\left({y}\right)}}}.

Using properties of logarithms we can write that 2ln(x)13ln(y)=ln(x2)ln(y13)=ln(x2y13){2}{\ln{{\left({x}\right)}}}-\frac{{1}}{{3}}{\ln{{\left({y}\right)}}}={\ln{{\left({{x}}^{{2}}\right)}}}-{\ln{{\left({{y}}^{{\frac{{1}}{{3}}}}\right)}}}={\ln{{\left(\frac{{{{x}}^{{2}}}}{{{{y}}^{{\frac{{1}}{{3}}}}}}\right)}}}.

Now, let's see how can we express logaritm with one base through logarithm with another base.

Let y=loga(x){y}={\log}_{{a}}{\left({x}\right)}. This means that ay=x{{a}}^{{y}}={x}.

Taking logarithms with base b{b} we have that logb(ay)=logb(x){\log}_{{b}}{\left({{a}}^{{y}}\right)}={\log}_{{b}}{\left({x}\right)} or ylogb(a)=logb(x){y}{\log}_{{b}}{\left({a}\right)}={\log}_{{b}}{\left({x}\right)}.

Thus, y=logb(x)logb(a){y}=\frac{{{\log}_{{b}}{\left({x}\right)}}}{{{\log}_{{b}}{\left({a}\right)}}}. From another side y=loga(x){y}={\log}_{{a}}{\left({x}\right)}.

Finally, loga(x)=1logb(a)logb(x){\log}_{{a}}{\left({x}\right)}=\frac{{1}}{{{\log}_{{b}}{\left({a}\right)}}}{\log}_{{b}}{\left({x}\right)}.

Change of base formula. loga(x)=logb(x)logb(a){\log}_{{a}}{\left({x}\right)}=\frac{{{\log}_{{b}}{\left({x}\right)}}}{{{\log}_{{b}}{\left({a}\right)}}}.

In case when b=e{b}={e} we can write equation as loga(x)=ln(x)ln(a){\color{blue}{{{\log}_{{a}}{\left({x}\right)}=\frac{{\ln{{\left({x}\right)}}}}{{\ln{{\left({a}\right)}}}}}}}.