Trigonometric Functions

definition of trigonometric functionsConsider unit circle centered at origin and point P0(1,0){P}_{{0}}{\left({1},{0}\right)}. If we begin to rotate point P0{P}_{{0}} around origin on angle t{t} then we will obtain point Pt{P}_{{t}}.

x-coordinate of this point is called cosine of number t{t} and denoted by cos(t){\cos{{\left({t}\right)}}}, y-coordinate of this point is called sine of number t{t} and denoted by sin(t){\sin{{\left({t}\right)}}}.

Tangent of number t{t} is ratio of sine and cosine: tan(t)=sin(t)cos(t){\tan{{\left({t}\right)}}}=\frac{{{\sin{{\left({t}\right)}}}}}{{{\cos{{\left({t}\right)}}}}}.

Cotangent of number t{t} is ratio of cosine and sine: cot(t)=cos(t)sin(t){\cot{{\left({t}\right)}}}=\frac{{{\cos{{\left({t}\right)}}}}}{{{\sin{{\left({t}\right)}}}}}.

Secant of number t{t} is sec(t)=1cos(t){\sec{{\left({t}\right)}}}=\frac{{1}}{{{\cos{{\left({t}\right)}}}}}.

Cosecant of number t{t} is csc(t)=1sin(t){\csc{{\left({t}\right)}}}=\frac{{1}}{{{\sin{{\left({t}\right)}}}}}.

When we talk about trigonometric functions we can use both radian and degree measure of angle t{t}, but in calculus we almost always use radian measure (unless other stated).

To convert radian measure to degree and vice versa following formulas are used:

1 rad=1800π570{1}\ {r}{a}{d}=\frac{{{{180}}^{{0}}}}{\pi}\approx{{57}}^{{0}} and 10=π1800 rad0.017 rad{{1}}^{{0}}=\frac{\pi}{{{{180}}^{{0}}}}\ {r}{a}{d}\approx{0.017}\ {r}{a}{d}.

So, π\pi is 1800{{180}}^{{0}}, 2π{2}\pi is 3600{{360}}^{{0}}, π2\frac{\pi}{{2}} is 900{{90}}^{{0}} etc.

Domain of cosine and sine is (,){\left(-\infty,\infty\right)}, their range is [1,1]{\left[-{1},{1}\right]}.sine and cosine

These functions are periodic with main period 2π{2}\pi, i.e. sin(x+2π)=sin(x){\sin{{\left({x}+{2}\pi\right)}}}={\sin{{\left({x}\right)}}} and cos(x+2π)=cos(x){\cos{{\left({x}+{2}\pi\right)}}}={\cos{{\left({x}\right)}}} for all x{x}.

Domain of tangent function is all x{x} except those x{x} where cos(x)=0{\cos{{\left({x}\right)}}}={0}.

Range of tangent function is (,){\left(-\infty,\infty\right)}.

Tangent is periodic function with period π\pi: tan(x+π)=tan(x){\tan{{\left({x}+\pi\right)}}}={\tan{{\left({x}\right)}}} for all x{x}.

tangent and cotangent functionsDomain of cotangent function is all x{x} except those x{x} where sin(x)=0{\sin{{\left({x}\right)}}}={0}.

Range of cotangent function is (,){\left(-\infty,\infty\right)}. Cotangent is periodic function with period π\pi: cot(x+π)=cot(x){\cot{{\left({x}+\pi\right)}}}={\cot{{\left({x}\right)}}} for all x{x}.

Following formulas hold for trigonometric functions. They will be used in further notes:

  1. cos2(x)+sin2(x)=1{{\cos}}^{{2}}{\left({x}\right)}+{{\sin}}^{{2}}{\left({x}\right)}={1} for all x{x}.
  2. 1+tan2(x)=sec2(x){1}+{{\tan}}^{{2}}{\left({x}\right)}={{\sec}}^{{2}}{\left({x}\right)} for all x{x}.
  3. 1+cot2(x)=csc2(x){1}+{{\cot}}^{{2}}{\left({x}\right)}={{\csc}}^{{2}}{\left({x}\right)} for all x{x}.
  4. sin(x±y)=sin(x)cos(y)±cos(x)sin(y){\sin{{\left({x}\pm{y}\right)}}}={\sin{{\left({x}\right)}}}{\cos{{\left({y}\right)}}}\pm{\cos{{\left({x}\right)}}}{\sin{{\left({y}\right)}}} for all x,y{x},{y}.
  5. cos(x+y)=cos(x)cos(y)sin(x)sin(y){\cos{{\left({x}+{y}\right)}}}={\cos{{\left({x}\right)}}}{\cos{{\left({y}\right)}}}-{\sin{{\left({x}\right)}}}{\sin{{\left({y}\right)}}} for all x,y{x},{y}.
  6. cos(xy)=cos(x)cos(y)+sin(x)sin(y){\cos{{\left({x}-{y}\right)}}}={\cos{{\left({x}\right)}}}{\cos{{\left({y}\right)}}}+{\sin{{\left({x}\right)}}}{\sin{{\left({y}\right)}}} for all x,y{x},{y}.
  7. tan(x+y)=tan(x)+tan(y)1tan(x)tan(y){\tan{{\left({x}+{y}\right)}}}=\frac{{{\tan{{\left({x}\right)}}}+{\tan{{\left({y}\right)}}}}}{{{1}-{\tan{{\left({x}\right)}}}{\tan{{\left({y}\right)}}}}} for all x,y{x},{y}.
  8. tan(xy)=tan(x)tan(y)1+tan(x)tan(y){\tan{{\left({x}-{y}\right)}}}=\frac{{{\tan{{\left({x}\right)}}}-{\tan{{\left({y}\right)}}}}}{{{1}+{\tan{{\left({x}\right)}}}{\tan{{\left({y}\right)}}}}} for all x,y{x},{y}.

Trigonometric functions, because of periodicity, are widely used for modeling repetitive events: motion of pendulum, vibrating string, sound waves etc.