There is one limit that is used very frequently in the applications of calculus and different sciences. This limit has the form lim h → 0 f ( x + h ) − f ( x ) h \lim_{{{h}\to{0}}}\frac{{{f{{\left({x}+{h}\right)}}}-{f{{\left({x}\right)}}}}}{{h}} lim h → 0 h f ( x + h ) − f ( x ) and has a special notation.
Let's start with the simplest function, namely the constant polynomial f ( x ) = c {f{{\left({x}\right)}}}={c} f ( x ) = c .
Derivative of a Constant Function. d d x ( c ) = 0 \frac{{d}}{{{d}{x}}}{\left({c}\right)}={0} d x d ( c ) = 0 .
Indeed, f ′ ( x ) = lim h → 0 f ( x + h ) − f ( x ) h = lim h → 0 c − c h = lim h → 0 0 = 0 {f{'}}{\left({x}\right)}=\lim_{{{h}\to{0}}}\frac{{{f{{\left({x}+{h}\right)}}}-{f{{\left({x}\right)}}}}}{{h}}=\lim_{{{h}\to{0}}}\frac{{{c}-{c}}}{{h}}=\lim_{{{h}\to{0}}}{0}={0} f ′ ( x ) = lim h → 0 h f ( x + h ) − f ( x ) = lim h → 0 h c − c = lim h → 0 0 = 0 .
Below is the list of the most common derivatives.
f ( x ) f{{\left({x}\right)}} f ( x ) f ′ ( x ) f{'}\left({x}\right) f ′ ( x ) Power Rule
x n x^n x n n x n − 1 nx^{n-1} n x n − 1 Exponential Function
a x a^x a x ln ( a ) a x {\ln{{\left({a}\right)}}}{{a}}^{{x}} ln ( a ) a x e x {{e}}^{{x}} e x e x {{e}}^{{x}} e x Logarithmic Function
log a ( x ) {\log}_{{a}}{\left({x}\right)} log a ( x ) 1 x ln ( a ) \frac{{1}}{{{x}{\ln{{\left({a}\right)}}}}} x l n ( a ) 1 ln ∣ x ∣ {\ln}{\left|{x}\right|} ln ∣ x ∣ 1 x \frac{{1}}{{x}} x 1 Trigonometric Functions
sin ( x ) {\sin{{\left({x}\right)}}} sin ( x ) cos ( x ) {\cos{{\left({x}\right)}}} cos ( x ) cos ( x ) {\cos{{\left({x}\right)}}} cos ( x ) − sin ( x ) -{\sin{{\left({x}\right)}}} − sin ( x ) tan ( x ) {\tan{{\left({x}\right)}}} tan ( x ) 1 cos 2 ( x ) = sec 2 ( x ) \frac{{1}}{{{{\cos}}^{{2}}{\left({x}\right)}}}={{\sec}}^{{2}}{\left({x}\right)} c o s 2 ( x ) 1 = sec 2 ( x ) cot ( x ) {\cot{{\left({x}\right)}}} cot ( x ) − 1 sin 2 ( x ) = − csc 2 ( x ) -\frac{{1}}{{{{\sin}}^{{2}}{\left({x}\right)}}}=-{{\csc}}^{{2}}{\left({x}\right)} − s i n 2 ( x ) 1 = − csc 2 ( x ) sec ( x ) = 1 cos ( x ) {\sec{{\left({x}\right)}}}=\frac{{1}}{{{\cos{{\left({x}\right)}}}}} sec ( x ) = c o s ( x ) 1 sec ( x ) tan ( x ) {\sec{{\left({x}\right)}}}{\tan{{\left({x}\right)}}} sec ( x ) tan ( x ) csc ( x ) = 1 sin ( x ) {\csc{{\left({x}\right)}}}=\frac{{1}}{{{\sin{{\left({x}\right)}}}}} csc ( x ) = s i n ( x ) 1 − csc ( x ) cot ( x ) -{\csc{{\left({x}\right)}}}{\cot{{\left({x}\right)}}} − csc ( x ) cot ( x ) Inverse Trigonometric Functions
arcsin ( x ) {\operatorname{arcsin}{{\left({x}\right)}}} arcsin ( x ) 1 1 − x 2 \frac{{1}}{{\sqrt{{{1}-{{x}}^{{2}}}}}} 1 − x 2 1 arccos ( x ) {\operatorname{arccos}{{\left({x}\right)}}} arccos ( x ) − 1 1 − x 2 -\frac{{1}}{{\sqrt{{{1}-{{x}}^{{2}}}}}} − 1 − x 2 1 arctan ( x ) {\operatorname{arctan}{{\left({x}\right)}}} arctan ( x ) 1 1 + x 2 \frac{{1}}{{{1}+{{x}}^{{2}}}} 1 + x 2 1 arccot ( x ) \text{arccot}{\left({x}\right)} arccot ( x ) − 1 1 + x 2 -\frac{{1}}{{{1}+{{x}}^{{2}}}} − 1 + x 2 1 arcsec ( x ) \text{arcsec}{\left({x}\right)} arcsec ( x ) 1 x x 2 − 1 \frac{{1}}{{{x}\sqrt{{{{x}}^{{2}}-{1}}}}} x x 2 − 1 1 arccsc ( x ) \text{arccsc}{\left({x}\right)} arccsc ( x ) − 1 x x 2 − 1 -\frac{{1}}{{{x}\sqrt{{{{x}}^{{2}}-{1}}}}} − x x 2 − 1 1 Hyperbolic Functions
sinh ( x ) {\sinh{{\left({x}\right)}}} sinh ( x ) cosh ( x ) {\cosh{{\left({x}\right)}}} cosh ( x ) cosh ( x ) {\cosh{{\left({x}\right)}}} cosh ( x ) sinh ( x ) {\sinh{{\left({x}\right)}}} sinh ( x ) tanh ( x ) {\tanh{{\left({x}\right)}}} tanh ( x ) 1 cosh 2 ( x ) = sech 2 ( x ) \frac{{1}}{{{{\cosh}}^{{2}}{\left({x}\right)}}}={\text{sech}}^{{2}}{\left({x}\right)} c o s h 2 ( x ) 1 = sech 2 ( x ) coth ( x ) {\coth{{\left({x}\right)}}} coth ( x ) − 1 sinh 2 ( x ) = − csch 2 ( x ) -\frac{{1}}{{{{\sinh}}^{{2}}{\left({x}\right)}}}=-{\operatorname{csch}}^{{2}}{\left({x}\right)} − s i n h 2 ( x ) 1 = − csch 2 ( x ) sech ( x ) = 1 cosh ( x ) \text{sech}{\left({x}\right)}=\frac{{1}}{{{\cosh{{\left({x}\right)}}}}} sech ( x ) = c o s h ( x ) 1 − sech ( x ) tanh ( x ) -\text{sech}{\left({x}\right)}{\tanh{{\left({x}\right)}}} − sech ( x ) tanh ( x ) csch ( x ) = 1 sinh ( x ) \operatorname{csch}{\left({x}\right)}=\frac{{1}}{{{\sinh{{\left({x}\right)}}}}} csch ( x ) = s i n h ( x ) 1 − csch ( x ) coth ( x ) -\operatorname{csch}{\left({x}\right)}{\coth{{\left({x}\right)}}} − csch ( x ) coth ( x ) Inverse Hyperbolic Functions
arcsinh ( x ) \text{arcsinh}{\left({x}\right)} arcsinh ( x ) 1 x 2 + 1 \frac{{1}}{{\sqrt{{{{x}}^{{2}}+{1}}}}} x 2 + 1 1 arccosh ( x ) \text{arccosh}{\left({x}\right)} arccosh ( x ) 1 x 2 − 1 \frac{{1}}{{\sqrt{{{{x}}^{{2}}-{1}}}}} x 2 − 1 1 arctanh ( x ) \text{arctanh}{\left({x}\right)} arctanh ( x ) 1 1 − x 2 \frac{{1}}{{{1}-{{x}}^{{2}}}} 1 − x 2 1 arccoth ( x ) \text{arccot}\text{h}{\left({x}\right)} arccot h ( x ) 1 1 − x 2 \frac{{1}}{{{1}-{{x}}^{{2}}}} 1 − x 2 1 arcsech ( x ) \text{arcsec}\text{h}{\left({x}\right)} arcsec h ( x ) − 1 x 1 − x 2 -\frac{{1}}{{{x}\sqrt{{{1}-{{x}}^{{2}}}}}} − x 1 − x 2 1 arccsch ( x ) \text{arccsc}\text{h}{\left({x}\right)} arccsc h ( x ) − 1 ∣ x ∣ 1 + x 2 -\frac{{1}}{{{\left|{x}\right|}\sqrt{{{1}+{{x}}^{{2}}}}}} − ∣ x ∣ 1 + x 2 1 Differentiation Rules
c {c} c 0 {0} 0 g ( x ) + h ( x ) {g{{\left({x}\right)}}}+{h}{\left({x}\right)} g ( x ) + h ( x ) g ′ ( x ) + h ′ ( x ) {g{'}}{\left({x}\right)}+{h}'{\left({x}\right)} g ′ ( x ) + h ′ ( x ) g ( x ) − h ( x ) {g{{\left({x}\right)}}}-{h}{\left({x}\right)} g ( x ) − h ( x ) g ′ ( x ) − h ′ ( x ) {g{'}}{\left({x}\right)}-{h}'{\left({x}\right)} g ′ ( x ) − h ′ ( x ) c ⋅ g ( x ) {c}\cdot{g{{\left({x}\right)}}} c ⋅ g ( x ) c ⋅ g ′ ( x ) {c}\cdot{g{'}}{\left({x}\right)} c ⋅ g ′ ( x ) g ( x ) h ( x ) {g{{\left({x}\right)}}}{h}{\left({x}\right)} g ( x ) h ( x ) g ′ ( x ) h ( x ) + g ( x ) h ′ ( x ) {g{'}}{\left({x}\right)}{h}{\left({x}\right)}+{g{{\left({x}\right)}}}{h}'{\left({x}\right)} g ′ ( x ) h ( x ) + g ( x ) h ′ ( x ) g ( x ) h ( x ) \frac{{{g{{\left({x}\right)}}}}}{{{h}{\left({x}\right)}}} h ( x ) g ( x ) g ′ ( x ) h ( x ) − g ( x ) h ′ ( x ) h 2 ( x ) \frac{{{g{'}}{\left({x}\right)}{h}{\left({x}\right)}-{g{{\left({x}\right)}}}{h}'{\left({x}\right)}}}{{{{h}}^{{2}}{\left({x}\right)}}} h 2 ( x ) g ′ ( x ) h ( x ) − g ( x ) h ′ ( x ) g ( h ( x ) ) {g{{\left({h}{\left({x}\right)}\right)}}} g ( h ( x ) ) g ′ ( h ( x ) ) ⋅ h ′ ( x ) {g{'}}{\left({h}{\left({x}\right)}\right)}\cdot{h}'{\left({x}\right)} g ′ ( h ( x ) ) ⋅ h ′ ( x ) f − 1 ( x ) {{f}}^{{-{1}}}{\left({x}\right)} f − 1 ( x ) 1 f ′ ( f − 1 ( x ) ) \frac{{1}}{{{f{'}}{\left({{f}}^{{-{1}}}{\left({x}\right)}\right)}}} f ′ ( f − 1 ( x ) ) 1
Now we are going to talk about the problems that lead to the concept of derivative.
The Tangent Line
Suppose that we are given a curve y = f ( x ) y={f{{\left({x}\right)}}} y = f ( x ) and a point on the curve P ( a , f ( a ) ) {P}{\left({a},{f{{\left({a}\right)}}}\right)} P ( a , f ( a ) ) . We want to find the equation of the tangent line at the point P P P .
In this note, we are going to talk about how to sketch the graph of the derivative knowing the graph of the function and see graphically when the function is not differentiable.
Example. The graph of the function is shown. Sketch the graph of the derivative.