Table of Derivatives

Below is the list of the most common derivatives.

f(x)f{{\left({x}\right)}} f(x)f{'}\left({x}\right)
Power Rule
xnx^n nxn1nx^{n-1}
Exponential Function
axa^x ln(a)ax{\ln{{\left({a}\right)}}}{{a}}^{{x}}
ex{{e}}^{{x}} ex{{e}}^{{x}}
Logarithmic Function
loga(x){\log}_{{a}}{\left({x}\right)} 1xln(a)\frac{{1}}{{{x}{\ln{{\left({a}\right)}}}}}
lnx{\ln}{\left|{x}\right|} 1x\frac{{1}}{{x}}
Trigonometric Functions
sin(x){\sin{{\left({x}\right)}}} cos(x){\cos{{\left({x}\right)}}}
cos(x){\cos{{\left({x}\right)}}} sin(x)-{\sin{{\left({x}\right)}}}
tan(x){\tan{{\left({x}\right)}}} 1cos2(x)=sec2(x)\frac{{1}}{{{{\cos}}^{{2}}{\left({x}\right)}}}={{\sec}}^{{2}}{\left({x}\right)}
cot(x){\cot{{\left({x}\right)}}} 1sin2(x)=csc2(x)-\frac{{1}}{{{{\sin}}^{{2}}{\left({x}\right)}}}=-{{\csc}}^{{2}}{\left({x}\right)}
sec(x)=1cos(x){\sec{{\left({x}\right)}}}=\frac{{1}}{{{\cos{{\left({x}\right)}}}}} sec(x)tan(x){\sec{{\left({x}\right)}}}{\tan{{\left({x}\right)}}}
csc(x)=1sin(x){\csc{{\left({x}\right)}}}=\frac{{1}}{{{\sin{{\left({x}\right)}}}}} csc(x)cot(x)-{\csc{{\left({x}\right)}}}{\cot{{\left({x}\right)}}}
Inverse Trigonometric Functions
arcsin(x){\operatorname{arcsin}{{\left({x}\right)}}} 11x2\frac{{1}}{{\sqrt{{{1}-{{x}}^{{2}}}}}}
arccos(x){\operatorname{arccos}{{\left({x}\right)}}} 11x2-\frac{{1}}{{\sqrt{{{1}-{{x}}^{{2}}}}}}
arctan(x){\operatorname{arctan}{{\left({x}\right)}}} 11+x2\frac{{1}}{{{1}+{{x}}^{{2}}}}
arccot(x)\text{arccot}{\left({x}\right)} 11+x2-\frac{{1}}{{{1}+{{x}}^{{2}}}}
arcsec(x)\text{arcsec}{\left({x}\right)} 1xx21\frac{{1}}{{{x}\sqrt{{{{x}}^{{2}}-{1}}}}}
arccsc(x)\text{arccsc}{\left({x}\right)} 1xx21-\frac{{1}}{{{x}\sqrt{{{{x}}^{{2}}-{1}}}}}
Hyperbolic Functions
sinh(x){\sinh{{\left({x}\right)}}} cosh(x){\cosh{{\left({x}\right)}}}
cosh(x){\cosh{{\left({x}\right)}}} sinh(x){\sinh{{\left({x}\right)}}}
tanh(x){\tanh{{\left({x}\right)}}} 1cosh2(x)=sech2(x)\frac{{1}}{{{{\cosh}}^{{2}}{\left({x}\right)}}}={\text{sech}}^{{2}}{\left({x}\right)}
coth(x){\coth{{\left({x}\right)}}} 1sinh2(x)=csch2(x)-\frac{{1}}{{{{\sinh}}^{{2}}{\left({x}\right)}}}=-{\operatorname{csch}}^{{2}}{\left({x}\right)}
sech(x)=1cosh(x)\text{sech}{\left({x}\right)}=\frac{{1}}{{{\cosh{{\left({x}\right)}}}}} sech(x)tanh(x)-\text{sech}{\left({x}\right)}{\tanh{{\left({x}\right)}}}
csch(x)=1sinh(x)\operatorname{csch}{\left({x}\right)}=\frac{{1}}{{{\sinh{{\left({x}\right)}}}}} csch(x)coth(x)-\operatorname{csch}{\left({x}\right)}{\coth{{\left({x}\right)}}}
Inverse Hyperbolic Functions
arcsinh(x)\text{arcsinh}{\left({x}\right)} 1x2+1\frac{{1}}{{\sqrt{{{{x}}^{{2}}+{1}}}}}
arccosh(x)\text{arccosh}{\left({x}\right)} 1x21\frac{{1}}{{\sqrt{{{{x}}^{{2}}-{1}}}}}
arctanh(x)\text{arctanh}{\left({x}\right)} 11x2\frac{{1}}{{{1}-{{x}}^{{2}}}}
arccoth(x)\text{arccot}\text{h}{\left({x}\right)} 11x2\frac{{1}}{{{1}-{{x}}^{{2}}}}
arcsech(x)\text{arcsec}\text{h}{\left({x}\right)} 1x1x2-\frac{{1}}{{{x}\sqrt{{{1}-{{x}}^{{2}}}}}}
arccsch(x)\text{arccsc}\text{h}{\left({x}\right)} 1x1+x2-\frac{{1}}{{{\left|{x}\right|}\sqrt{{{1}+{{x}}^{{2}}}}}}
Differentiation Rules
c{c} 0{0}
g(x)+h(x){g{{\left({x}\right)}}}+{h}{\left({x}\right)} g(x)+h(x){g{'}}{\left({x}\right)}+{h}'{\left({x}\right)}
g(x)h(x){g{{\left({x}\right)}}}-{h}{\left({x}\right)} g(x)h(x){g{'}}{\left({x}\right)}-{h}'{\left({x}\right)}
cg(x){c}\cdot{g{{\left({x}\right)}}} cg(x){c}\cdot{g{'}}{\left({x}\right)}
g(x)h(x){g{{\left({x}\right)}}}{h}{\left({x}\right)} g(x)h(x)+g(x)h(x){g{'}}{\left({x}\right)}{h}{\left({x}\right)}+{g{{\left({x}\right)}}}{h}'{\left({x}\right)}
g(x)h(x)\frac{{{g{{\left({x}\right)}}}}}{{{h}{\left({x}\right)}}} g(x)h(x)g(x)h(x)h2(x)\frac{{{g{'}}{\left({x}\right)}{h}{\left({x}\right)}-{g{{\left({x}\right)}}}{h}'{\left({x}\right)}}}{{{{h}}^{{2}}{\left({x}\right)}}}
g(h(x)){g{{\left({h}{\left({x}\right)}\right)}}} g(h(x))h(x){g{'}}{\left({h}{\left({x}\right)}\right)}\cdot{h}'{\left({x}\right)}
f1(x){{f}}^{{-{1}}}{\left({x}\right)} 1f(f1(x))\frac{{1}}{{{f{'}}{\left({{f}}^{{-{1}}}{\left({x}\right)}\right)}}}