f(x) | f′(x) |
Power Rule |
xn | nxn−1 |
Exponential Function |
ax | ln(a)ax |
ex | ex |
Logarithmic Function |
loga(x) | xln(a)1 |
ln∣x∣ | x1 |
Trigonometric Functions |
sin(x) | cos(x) |
cos(x) | −sin(x) |
tan(x) | cos2(x)1=sec2(x) |
cot(x) | −sin2(x)1=−csc2(x) |
sec(x)=cos(x)1 | sec(x)tan(x) |
csc(x)=sin(x)1 | −csc(x)cot(x) |
Inverse Trigonometric Functions |
arcsin(x) | 1−x21 |
arccos(x) | −1−x21 |
arctan(x) | 1+x21 |
arccot(x) | −1+x21 |
arcsec(x) | xx2−11 |
arccsc(x) | −xx2−11 |
Hyperbolic Functions |
sinh(x) | cosh(x) |
cosh(x) | sinh(x) |
tanh(x) | cosh2(x)1=sech2(x) |
coth(x) | −sinh2(x)1=−csch2(x) |
sech(x)=cosh(x)1 | −sech(x)tanh(x) |
csch(x)=sinh(x)1 | −csch(x)coth(x) |
Inverse Hyperbolic Functions |
arcsinh(x) | x2+11 |
arccosh(x) | x2−11 |
arctanh(x) | 1−x21 |
arccoth(x) | 1−x21 |
arcsech(x) | −x1−x21 |
arccsch(x) | −∣x∣1+x21 |
Differentiation Rules |
c | 0 |
g(x)+h(x) | g′(x)+h′(x) |
g(x)−h(x) | g′(x)−h′(x) |
c⋅g(x) | c⋅g′(x) |
g(x)h(x) | g′(x)h(x)+g(x)h′(x) |
h(x)g(x) | h2(x)g′(x)h(x)−g(x)h′(x) |
g(h(x)) | g′(h(x))⋅h′(x) |
f−1(x) | f′(f−1(x))1 |