The Constant Multiple Rule. If c is a constant anf f is a differentiable function then (cf(x))′=c(f(x))′.
Proof. By definition (cf(x))′=limh→0hcf(x+h)−cf(x)=climh→0hf(x+h)−f(x)=cf′(x).
Example 1. Find f′(x) if f(x)=2⋅3x.
f′(x)=(2⋅3x)′=2(3x)′=2⋅3xln(3).
Example 2. Find f′(x) if f(x)=2x1.
f′(x)=(2x1)′=21(x1)′=21(x211)′=21(x−21)′=21⋅(−21)x−21−1=−41x−23.