Derivative of Inverse Function

Now, let's use implicit differentiation to find derivatives of inverse functions.

Fact. Suppose that the function y=f(x){y}={f{{\left({x}\right)}}} has unique inverse and has finite derivative f(x)0{f{'}}{\left({x}\right)}\ne{0} then the derivative of the inverse function y=f1(x){y}={{f}}^{{-{1}}}{\left({x}\right)} is (f1(x))=1f(f1(x)){\left({{f}}^{{-{1}}}{\left({x}\right)}\right)}'=\frac{{1}}{{{f{'}}{\left({{f}}^{{-{1}}}{\left({x}\right)}\right)}}}.

Proof.

Suppose that we have a function y=f1(x){y}={{f}}^{{-{1}}}{\left({x}\right)}. This means that f(y)=x{f{{\left({y}\right)}}}={x}.

Differentiating this equality implicitly with respect to x{x} gives f(y)y=1{f{'}}{\left({y}\right)}{y}'={1} or y=1f(y){y}'=\frac{{1}}{{{f{'}}{\left({y}\right)}}}.

But y=f1(x){y}={{f}}^{{-{1}}}{\left({x}\right)}, so y=1f(f1(x)){y}'=\frac{{1}}{{{f{'}}{\left({{f}}^{{-{1}}}{\left({x}\right)}\right)}}}.

Thus, (f1(x))=1f(f1(x)){\left({{f}}^{{-{1}}}{\left({x}\right)}\right)}'=\frac{{1}}{{{f{'}}{\left({{f}}^{{-{1}}}{\left({x}\right)}\right)}}}.

Now we can easily find derivative of inverse functions.

Example 1. Find derivative of logarithmic function y=loga(x){y}={\log}_{{a}}{\left({x}\right)}.

Logarithmic function is inverse of exponential, so here f(x)=ax{f{{\left({x}\right)}}}={{a}}^{{x}} and f1(x)=loga(x){{f}}^{{-{1}}}{\left({x}\right)}={\log}_{{a}}{\left({x}\right)}.

Since f(x)=axln(a){f{'}}{\left({x}\right)}={{a}}^{{x}}{\ln{{\left({a}\right)}}} then f(f1(x))=f(loga(x))=aloga(x)ln(a)=xln(a){f{'}}{\left({{f}}^{{-{1}}}{\left({x}\right)}\right)}={f{'}}{\left({\log}_{{a}}{\left({x}\right)}\right)}={{a}}^{{{\log}_{{a}}{\left({x}\right)}}}{\ln{{\left({a}\right)}}}={x}{\ln{{\left({a}\right)}}}.

So (f1(x))=1f(f1(x))=1xln(a){\left({{f}}^{{-{1}}}{\left({x}\right)}\right)}'=\frac{{1}}{{{f{'}}{\left({{f}}^{{-{1}}}{\left({x}\right)}\right)}}}=\frac{{1}}{{{x}{\ln{{\left({a}\right)}}}}}.

Therefore, (loga(x))=1xln(a){\left({\log}_{{a}}{\left({x}\right)}\right)}'=\frac{{1}}{{{x}{\ln{{\left({a}\right)}}}}}.

Example 2. Find derivative of inverse sine function y=arcsin(x){y}={\operatorname{arcsin}{{\left({x}\right)}}}.

Inverse sine is inverse of sine function, so here f(x)=sin(x){f{{\left({x}\right)}}}={\sin{{\left({x}\right)}}} and f1(x)=arcsin(x){{f}}^{{-{1}}}{\left({x}\right)}={\operatorname{arcsin}{{\left({x}\right)}}}.

Since f(x)=cos(x){f{'}}{\left({x}\right)}={\cos{{\left({x}\right)}}} then f(f1(x))=f(arcsin(x))=cos(arcsin(x)){f{'}}{\left({{f}}^{{-{1}}}{\left({x}\right)}\right)}={f{'}}{\left({\operatorname{arcsin}{{\left({x}\right)}}}\right)}={\cos{{\left({\operatorname{arcsin}{{\left({x}\right)}}}\right)}}}.

So (f1(x))=1f(f1(x))=1cos(arcsin(x)){\left({{f}}^{{-{1}}}{\left({x}\right)}\right)}'=\frac{{1}}{{{f{'}}{\left({{f}}^{{-{1}}}{\left({x}\right)}\right)}}}=\frac{{1}}{{{\cos{{\left({\operatorname{arcsin}{{\left({x}\right)}}}\right)}}}}}.

We can simplify cos(arcsin(x)){\cos{{\left({\operatorname{arcsin}{{\left({x}\right)}}}\right)}}}.

Using the main trigonometric identity, we have that cos2(arcsin(x))+sin2(arcsin(x))=1{{\cos}}^{{2}}{\left({\operatorname{arcsin}{{\left({x}\right)}}}\right)}+{{\sin}}^{{2}}{\left({\operatorname{arcsin}{{\left({x}\right)}}}\right)}={1}.

From the properties of the inverse sine we know that sin(arcsin(x))=x{\sin{{\left({\operatorname{arcsin}{{\left({x}\right)}}}\right)}}}={x}. Also π2arcsin(x)π2-\frac{\pi}{{2}}\le{\operatorname{arcsin}{{\left({x}\right)}}}\le\frac{\pi}{{2}}. That's why cos(arcsin(x)){\cos{{\left({\operatorname{arcsin}{{\left({x}\right)}}}\right)}}} should be positive, so cos(arcsin(x))=1x2{\cos{{\left({\operatorname{arcsin}{{\left({x}\right)}}}\right)}}}=\sqrt{{{1}-{{x}}^{{2}}}}.

Thus, (arcsin(x))=11x2{\left({\operatorname{arcsin}{{\left({x}\right)}}}\right)}'=\frac{{1}}{{\sqrt{{{1}-{{x}}^{{2}}}}}}.