Implicit Differentiation

The techniques we learned allow us to differentiate the functions like y=x2+sin(x)3{y}={\sqrt[{{3}}]{{{{x}}^{{2}}+{\sin{{\left({x}\right)}}}}}} or y=tan(x)esin(x){y}=\frac{{\tan{{\left({x}\right)}}}}{{{{e}}^{{{\sin{{\left({x}\right)}}}}}}}, or, in general, y=f(x){y}={f{{\left({x}\right)}}}. But what to do if we can't express y{y} in terms of x{x} or if the expression would be very complex?

Consider x2+y2=16{{x}}^{{2}}+{{y}}^{{2}}={16}. This is the equation of a circle, and we can solve it for y{y}: y=±16x2{y}=\pm\sqrt{{{16}-{{x}}^{{2}}}}. But here we obtained two functions and we have more work than earlier.

For example, x3+y3=2xy{{x}}^{{3}}+{{y}}^{{3}}={2}{x}{y} can be solved for y{y}, but the expression would be very complex, and, finally, x2+y4=sin(x+y){{x}}^{{2}}+{{y}}^{{4}}={\sin{{\left({x}+{y}\right)}}} can't be solved explicitly for x{x}.

What to do in such cases?

Fortunately, we don't need to express y{y} in terms of x{x}. We can use implicit differentiation. This consists in differentiating both sides of the equation with respect to x{x} and then solving the resulting equation for y{y}'. We assume that the given equation determines y{y} implicitly as a differentiable function of x{x}, so that the method of implicit differentiation could be applied.

Example 1. Find the equation of the tangent line to x2+y2=25{{x}}^{{2}}+{{y}}^{{2}}={25} at the point (3,4)(3,4).

To find the slope of the tangent line, we need the derivative of the function. Here, the function is given implicitly; so, we use implicit differentiation.

Differentiate both sides of the equation with respect to x{x} and remember that y{y} is a function of x{x}.

ddx(x2+y2)=ddx(25)\frac{{d}}{{{d}{x}}}{\left({{x}}^{{2}}+{{y}}^{{2}}\right)}=\frac{{d}}{{{d}{x}}}{\left({25}\right)}

ddx(x2)+ddx(y2)=0\frac{{d}}{{{d}{x}}}{\left({{x}}^{{2}}\right)}+\frac{{d}}{{{d}{x}}}{\left({{y}}^{{2}}\right)}={0}

2x+2ydydx=0{2}{x}+{2}{y}\frac{{{d}{y}}}{{{d}{x}}}={0}.

Notice how we used the chain rule while differentiating y2{{y}}^{{2}} : ddx(y2)=ddy(y2)dydx=2ydydx\frac{{d}}{{{d}{x}}}{\left({{y}}^{{2}}\right)}=\frac{{d}}{{{d}{y}}}{\left({{y}}^{{2}}\right)}\cdot\frac{{{d}{y}}}{{{d}{x}}}={2}{y}\frac{{{d}{y}}}{{{d}{x}}}.

Solving for dydx\frac{{{d}{y}}}{{{d}{x}}} gives dydx=xy\frac{{{d}{y}}}{{{d}{x}}}=-\frac{{x}}{{y}}.

Therefore, at the point (3,4)(3,4), the slope of the tangent line is 34-\frac{{3}}{{4}}, and the equation of the tangent line is y4=34(x3){y}-{4}=-\frac{{3}}{{4}}{\left({x}-{3}\right)}, or y=34x+254{y}=-\frac{{3}}{{4}}{x}+\frac{{25}}{{4}}.

As can be seen, implicit differentiation can make differentiation easier and can save loads of time.

Example 2. Where is the tangent line horizontal or vertical to x3+y3=3xy{{x}}^{{3}}+{{y}}^{{3}}={3}{x}{y} (folium of Descartes)?

Differentiating both sides of the equation with respect to x{x}, we obtain ddx(x3+y3)=ddx(3xy)\frac{{d}}{{{d}{x}}}{\left({{x}}^{{3}}+{{y}}^{{3}}\right)}=\frac{{d}}{{{d}{x}}}{\left({3}{x}{y}\right)}, or ddx(x3)+ddx(y3)=3ddx(xy)\frac{{d}}{{{d}{x}}}{\left({{x}}^{{3}}\right)}+\frac{{d}}{{{d}{x}}}{\left({{y}}^{{3}}\right)}={3}\frac{{d}}{{{d}{x}}}{\left({x}{y}\right)}.

To differentiate xy{x}{y}, we need to use the product rule: ddx(xy)=ddx(x)y+xddx(y)=y+xdydx\frac{{d}}{{{d}{x}}}{\left({x}{y}\right)}=\frac{{d}}{{{d}{x}}}{\left({x}\right)}{y}+{x}\frac{{d}}{{{d}{x}}}{\left({y}\right)}={y}+{x}\frac{{{d}{y}}}{{{d}{x}}}.

To differentiate y3{{y}}^{{3}}, we need to use the chain rule: ddxy3=ddy(y3)dydx=3y2dydx\frac{{d}}{{{d}{x}}}{{y}}^{{3}}=\frac{{d}}{{{d}{y}}}{\left({{y}}^{{3}}\right)}\cdot\frac{{{d}{y}}}{{{d}{x}}}={3}{{y}}^{{2}}\frac{{{d}{y}}}{{{d}{x}}}.

So, the equation can be rewritten as

3x2+3y2dydx=3(y+xdydx){3}{{x}}^{{2}}+{3}{{y}}^{{2}}\frac{{{d}{y}}}{{{d}{x}}}={3}{\left({y}+{x}\frac{{{d}{y}}}{{{d}{x}}}\right)}.

Solving for dydx\frac{{{d}{y}}}{{{d}{x}}} gives dydx=yx2y2x\frac{{{d}{y}}}{{{d}{x}}}=\frac{{{y}-{{x}}^{{2}}}}{{{{y}}^{{2}}-{x}}}.folium of descartes

The tangent line is horizontal when dydx=0\frac{{{d}{y}}}{{{d}{x}}}={0}, or yx2=0{y}-{{x}}^{{2}}={0}, which gives y=x2{y}={{x}}^{{2}}.

If we now substitute y{y} in the initial equation with the obtained expression, we have that x3+(x2)3=3xx2{{x}}^{{3}}+{{\left({{x}}^{{2}}\right)}}^{{3}}={3}{x}\cdot{{x}}^{{2}}, or x62x3=0{{x}}^{{6}}-{2}{{x}}^{{3}}={0}.

Thus, the tangent line is horizontal when either x=0{x}={0} or x=213{x}={{2}}^{{\frac{{1}}{{3}}}}.

So, the tangent line is horizontal at the points (0,0)(0,0) and (213,(213)2)=(213,223)(1.26,1.59){\left({{2}}^{{\frac{{1}}{{3}}}},{{\left({{2}}^{{\frac{{1}}{{3}}}}\right)}}^{{2}}\right)}={\left({{2}}^{{\frac{{1}}{{3}}}},{{2}}^{{\frac{{2}}{{3}}}}\right)}\approx{\left({1.26},{1.59}\right)}.

The tangent line is vertical when the denominator in the expression for dydx\frac{{{d}{y}}}{{{d}{x}}} is 00, or y2=x.{{y}}^{{2}}={x}. Another method is to observe that the equation of the curve is unchanged when x{x} and y{y} are interchanged, so the curve is symmetric about the line y=x{y}={x}. This means that the horizontal tangents at (0,0)(0, 0) and (213,223){\left({{2}}^{{\frac{{1}}{{3}}}},{{2}}^{{\frac{{2}}{{3}}}}\right)} correspond to the vertical tangents at (0,0)(0, 0) and (223,213){\left({{2}}^{{\frac{{2}}{{3}}}},{{2}}^{{\frac{{1}}{{3}}}}\right)}.

Example 3. Find y=dydx{y}'=\frac{{{d}{y}}}{{{d}{x}}}, where sin(x+y)=ex2y2{\sin{{\left({x}+{y}\right)}}}={{e}}^{{{{x}}^{{2}}{{y}}^{{2}}}}.

We use the chain rule and the product rule.

ddx(sin(x+y))=ddx(ex2y2)\frac{{d}}{{{d}{x}}}{\left({\sin{{\left({x}+{y}\right)}}}\right)}=\frac{{d}}{{{d}{x}}}{\left({{e}}^{{{{x}}^{{2}}{{y}}^{{2}}}}\right)}

cos(x+y)ddx(x+y)=ex2y2ddx(x2y2){\cos{{\left({x}+{y}\right)}}}\cdot\frac{{d}}{{{d}{x}}}{\left({x}+{y}\right)}={{e}}^{{{{x}}^{{2}}{{y}}^{{2}}}}\cdot\frac{{d}}{{{d}{x}}}{\left({{x}}^{{2}}{{y}}^{{2}}\right)}

cos(x+y)(1+y)=ex2y2(ddx(x2)y2+x2ddx(y2)){\cos{{\left({x}+{y}\right)}}}{\left({1}+{y}'\right)}={{e}}^{{{{x}}^{{2}}{{y}}^{{2}}}}{\left(\frac{{d}}{{{d}{x}}}{\left({{x}}^{{2}}\right)}{{y}}^{{2}}+{{x}}^{{2}}\frac{{d}}{{{d}{x}}}{\left({{y}}^{{2}}\right)}\right)}

cos(x+y)(1+y)=ex2y2(2xy2+2yx2y){\cos{{\left({x}+{y}\right)}}}{\left({1}+{y}'\right)}={{e}}^{{{{x}}^{{2}}{{y}}^{{2}}}}{\left({2}{x}{{y}}^{{2}}+{2}{y}{{x}}^{{2}}{y}'\right)}

cos(x+y)+cos(x+y)y=2xy2ex2y2+2yx2ex2y2y{\cos{{\left({x}+{y}\right)}}}+{\cos{{\left({x}+{y}\right)}}}{y}'={2}{x}{{y}}^{{2}}{{e}}^{{{{x}}^{{2}}{{y}}^{{2}}}}+{2}{y}{{x}}^{{2}}{{e}}^{{{{x}}^{{2}}{{y}}^{{2}}}}{y}'.

Solving for y{y}' gives y=cos(x+y)2xy2ex2y22yx2ex2y2cos(x+y){y}'=\frac{{{\cos{{\left({x}+{y}\right)}}}-{2}{x}{{y}}^{{2}}{{e}}^{{{{x}}^{{2}}{{y}}^{{2}}}}}}{{{2}{y}{{x}}^{{2}}{{e}}^{{{{x}}^{{2}}{{y}}^{{2}}}}-{\cos{{\left({x}+{y}\right)}}}}}.

Since, from the equation of a curve, sin(x+y)=ex2y2{\sin{{\left({x}+{y}\right)}}}={{e}}^{{{{x}}^{{2}}{{y}}^{{2}}}}, we can write equivalently y=cos(x+y)2xy2sin(x+y)2yx2sin(x+y)cos(x+y){y}'=\frac{{{\cos{{\left({x}+{y}\right)}}}-{2}{x}{{y}}^{{2}}{\sin{{\left({x}+{y}\right)}}}}}{{{2}{y}{{x}}^{{2}}{\sin{{\left({x}+{y}\right)}}}-{\cos{{\left({x}+{y}\right)}}}}}.