Category: Function Types

Increasing and Decreasing Functions

A function f{f{}} is called increasing on interval I{I} if f(x1)<f(x2){f{{\left({x}_{{1}}\right)}}}<{f{{\left({x}_{{2}}\right)}}} whenever x1<x2{x}_{{1}}<{x}_{{2}} in I{I}.

A function f{f{}} is called decreasing on interval I{I} if f(x1)>f(x2){f{{\left({x}_{{1}}\right)}}}>{f{{\left({x}_{{2}}\right)}}} whenever x1>x2{x}_{{1}}>{x}_{{2}} in I{I}.

Even Odd Function

If f(x)=f(x){f{{\left({x}\right)}}}={f{{\left(-{x}\right)}}} for every x{x} in the domain of f{f{}} then f is an even function.

For example, f(x)=x2{f{{\left({x}\right)}}}={{x}}^{{2}} is even because for every x{x} f(x)=(x)2=x2=f(x){f{{\left(-{x}\right)}}}={{\left(-{x}\right)}}^{{2}}={{x}}^{{2}}={f{{\left({x}\right)}}}.

Piecewise Function

When functions is determined by different formulas on different intervals then function is piecewise.

For example, f(x)={1xifx<0x2ifx0{f{{\left({x}\right)}}}={\left\{\begin{array}{c}{1}-{x}{\quad\text{if}\quad}{x}<{0}\\{{x}}^{{2}}{\quad\text{if}\quad}{x}\ge{0}\\ \end{array}\right.} is piecewise because on interval (,0){\left(-\infty,{0}\right)} f(x)=1x{f{{\left({x}\right)}}}={1}-{x} and on interval [0,){\left[{0},\infty\right)} f(x)=x2{f{{\left({x}\right)}}}={{x}}^{{2}}.

Periodic Function

Function y=f(x)y={f{{\left({x}\right)}}} is called periodic if exists such number T0{T}\ne{0} that for any x{x} from domain of the function f(x+T)=f(x){f{{\left({x}+{T}\right)}}}={f{{\left({x}\right)}}}.