Even Odd Function

If f(x)=f(x){f{{\left({x}\right)}}}={f{{\left(-{x}\right)}}} for every x{x} in the domain of f{f{}} then f is an even function.

For example, f(x)=x2{f{{\left({x}\right)}}}={{x}}^{{2}} is even because for every x{x} f(x)=(x)2=x2=f(x){f{{\left(-{x}\right)}}}={{\left(-{x}\right)}}^{{2}}={{x}}^{{2}}={f{{\left({x}\right)}}}.

If f(x)=f(x){f{{\left(-{x}\right)}}}=-{f{{\left({x}\right)}}} for every x{x} in the domain of f{f{}} then f{f{}} is an odd function.

For example, f(x)=x5{f{{\left({x}\right)}}}={{x}}^{{5}} is odd because for every x{x} f(x)=(x)5=x5=f(x){f{{\left(-{x}\right)}}}={{\left(-{x}\right)}}^{{5}}=-{{x}}^{{5}}=-{f{{\left({x}\right)}}}.

Consider graph of the two functions: y=x2{y}={{x}}^{{2}} and y=14x3{y}=\frac{{1}}{{4}}{{x}}^{{3}}.

even and odd functions

Since y=x2{y}={{x}}^{{2}} is even function then we draw it on interval (0,){\left({0},\infty\right)} (red solid line) and then reflect it about y-axis (red dashed line)

Since y=14x3{y}=\frac{{1}}{{4}}{{x}}^{{3}} is odd function then we draw it on interval (0,){\left({0},\infty\right)} (purple solid line) and then reflect it about origin (purple dashed line). In other words we rotate graph 1800{{180}}^{{0}} counterclockwise.

Example 1. Determine whether function y=1x2{y}=\frac{{1}}{{{x}}^{{2}}} is even or odd.

Since f(x)=1(x)2=1x2=f(x){f{{\left(-{x}\right)}}}=\frac{{1}}{{{{\left(-{x}\right)}}^{{2}}}}=\frac{{1}}{{{x}}^{{2}}}={f{{\left({x}\right)}}} then function is even.

Example 2. Determine whether function y=x3x{y}={{x}}^{{3}}-{x} is even or odd.

Since f(x)=(x)3(x)=x3+x=(x3x)=f(x){f{{\left(-{x}\right)}}}={{\left(-{x}\right)}}^{{3}}-{\left(-{x}\right)}={{x}}^{{3}}+{x}=-{\left({{x}}^{{3}}-{x}\right)}=-{f{{\left({x}\right)}}} then function is odd.

Example 3. Determine whether function y=x3+x2{y}={{x}}^{{3}}+{{x}}^{{2}} is even or odd.

Since f(x)=(x)3+(x)2=x3+x2{f{{\left(-{x}\right)}}}={{\left(-{x}\right)}}^{{3}}+{{\left(-{x}\right)}}^{{2}}=-{{x}}^{{3}}+{{x}}^{{2}} then f(x)f(x){f{{\left(-{x}\right)}}}\ne{f{{\left({x}\right)}}} and f(x)f(x){f{{\left(-{x}\right)}}}\ne-{f{{\left({x}\right)}}}. This means that function is neither even, nor odd.