Other Indeterminate Forms

We already talked about other indeterminate forms (indeterminate differences, indeterminate products and indeterminate powers), so we know that we can convert them into either indeterminate form of type 00\frac{{0}}{{0}} or indeterminate form of type \frac{\infty}{\infty}. This allows us to use either First or Second L'Hopital's Rules.

Indeterminate Products

Product will have indeterminate form only if limxaf(x)=0\lim_{{{x}\to{a}}}{f{{\left({x}\right)}}}={0} and limxag(x)=\lim_{{{x}\to{a}}}{g{{\left({x}\right)}}}=\infty (or -\infty ). In this case limxaf(x)g(x)\lim_{{{x}\to{a}}}{f{{\left({x}\right)}}}{g{{\left({x}\right)}}} is indeterminate form of type 0{0}\cdot\infty.

We can deal with it by writing product as a quotient:

limxaf(x)1g(x)\lim_{{{x}\to{a}}}\frac{{f{{\left({x}\right)}}}}{{\frac{{1}}{{g{{\left({x}\right)}}}}}} (this will give indeterminate form of type 00\frac{{0}}{{0}}) or limxag(x)1f(x)\lim_{{{x}\to{a}}}\frac{{g{{\left({x}\right)}}}}{{\frac{{1}}{{f{{\left({x}\right)}}}}}} (this will give indeterminate form of type \frac{{\infty}}{{\infty}}).

Example 1. Find limx0+xln(x)\lim_{{{x}\to{{0}}^{+}}}{x}{\ln{{\left({x}\right)}}}.

Since x0{x}\to{0} and ln(x){\ln{{\left({x}\right)}}}\to-\infty when x0+{x}\to{{0}}^{+} this is indeterminate form of type 0{0}\cdot\infty.

Representing product as quotient we obtain indeterminate form of type \frac{{\infty}}{{\infty}} and therefore can apply Second L'Hospital's Rule:

limx0+xln(x)=limx0+ln(x)1x=limx0+(ln(x))(1x)=limx0+1x1x2=\lim_{{{x}\to{{0}}^{+}}}{x}{\ln{{\left({x}\right)}}}=\lim_{{{x}\to{{0}}^{+}}}\frac{{{\ln{{\left({x}\right)}}}}}{{\frac{{1}}{{x}}}}=\lim_{{{x}\to{{0}}^{+}}}\frac{{{\left({\ln{{\left({x}\right)}}}\right)}'}}{{{\left(\frac{{1}}{{x}}\right)}'}}=\lim_{{{x}\to{{0}}^{+}}}\frac{{\frac{{1}}{{x}}}}{{-\frac{{1}}{{{x}}^{{2}}}}}=

=limx0+x=0=\lim_{{{x}\to{{0}}^{+}}}-{x}={0}.

Note, that we could represent product as indeterminate form of type 00\frac{{0}}{{0}}: limx0+xln(x)=limx0+x1ln(x)\lim_{{{x}\to{{0}}^{+}}}{x}{\ln{{\left({x}\right)}}}=\lim_{{{x}\to{{0}}^{+}}}\frac{{x}}{{\frac{{1}}{{{\ln{{\left({x}\right)}}}}}}}. But applying L'Hopital's Rule to this limit will give a more complicated expression than the one we started with.

In general, when we rewrite an indeterminate product, we try to choose the option that leads to the simpler limit.

Indeterminate Differences

Difference will have indeterminate form only if limxaf(x)=\lim_{{{x}\to{a}}}{f{{\left({x}\right)}}}=\infty and limxag(x)=\lim_{{{x}\to{a}}}{g{{\left({x}\right)}}}=\infty. In this case limit limxa(f(x)g(x))\lim_{{{x}\to{a}}}{\left({f{{\left({x}\right)}}}-{g{{\left({x}\right)}}}\right)} is indeterminate form of type \infty-\infty.

We can deal with it by rewriting it as quotient:

f(x)g(x)=11f(x)11g(x)=1g(x)1f(x)1f(x)1g(x){f{{\left({x}\right)}}}-{g{{\left({x}\right)}}}=\frac{{1}}{{\frac{{1}}{{{f{{\left({x}\right)}}}}}}}-\frac{{1}}{{\frac{{1}}{{{g{{\left({x}\right)}}}}}}}=\frac{{\frac{{1}}{{{g{{\left({x}\right)}}}}}-\frac{{1}}{{{f{{\left({x}\right)}}}}}}}{{\frac{{1}}{{{f{{\left({x}\right)}}}}}\cdot\frac{{1}}{{{g{{\left({x}\right)}}}}}}}. However, on practice there is a much simpler expression.

Example 2. Compute limx(π2)(sec(x)tan(x))\lim_{{{x}\to{{\left(\frac{\pi}{{2}}\right)}}^{{-}}}}{\left({\sec{{\left({x}\right)}}}-{\tan{{\left({x}\right)}}}\right)}.

Note that sec(x){\sec{{\left({x}\right)}}}\to\infty and tan(x){\tan{{\left({x}\right)}}}\to\infty as x(π2){x}\to{{\left(\frac{\pi}{{2}}\right)}}^{{-{}}}. Therefore we have indeterminate for of type \infty-\infty.

Here we can use a common denominator:

limx(π2)(sec(x)tan(x))=limx(π2)(1cos(x)sin(x)cos(x))=limx(π2)1sin(x)cos(x)\lim_{{{x}\to{{\left(\frac{\pi}{{2}}\right)}}^{{-}}}}{\left({\sec{{\left({x}\right)}}}-{\tan{{\left({x}\right)}}}\right)}=\lim_{{{x}\to{{\left(\frac{\pi}{{2}}\right)}}^{{-}}}}{\left(\frac{{1}}{{{\cos{{\left({x}\right)}}}}}-\frac{{{\sin{{\left({x}\right)}}}}}{{{\cos{{\left({x}\right)}}}}}\right)}=\lim_{{{x}\to{{\left(\frac{\pi}{{2}}\right)}}^{{-}}}}\frac{{{1}-{\sin{{\left({x}\right)}}}}}{{{\cos{{\left({x}\right)}}}}}.

We can use L'Hopital's rule now, because limx(π2)(1sin(x))=0\lim_{{{x}\to{{\left(\frac{\pi}{{2}}\right)}}^{{-}}}}{\left({1}-{\sin{{\left({x}\right)}}}\right)}={0} and limx(π2)cos(x)=0\lim_{{{x}\to{{\left(\frac{\pi}{{2}}\right)}}^{{-}}}}{\cos{{\left({x}\right)}}}={0}:

limx(π2)1sin(x)cos(x)=limx(π2)(1sin(x))(cos(x))=limx(π2)cos(x)sin(x)=0\lim_{{{x}\to{{\left(\frac{\pi}{{2}}\right)}}^{{-}}}}\frac{{{1}-{\sin{{\left({x}\right)}}}}}{{{\cos{{\left({x}\right)}}}}}=\lim_{{{x}\to{{\left(\frac{\pi}{{2}}\right)}}^{{-}}}}\frac{{{\left({1}-{\sin{{\left({x}\right)}}}\right)}'}}{{{\left({\cos{{\left({x}\right)}}}\right)}'}}=\lim_{{{x}\to{{\left(\frac{\pi}{{2}}\right)}}^{{-}}}}\frac{{-{\cos{{\left({x}\right)}}}}}{{-{\sin{{\left({x}\right)}}}}}={0}.

Example 3. Calculate limx0(cot2(x)1x2)\lim_{{{x}\to{0}}}{\left({{\cot}}^{{2}}{\left({x}\right)}-\frac{{1}}{{{x}}^{{2}}}\right)}.

Clearly we have indeterminate form of type \infty-\infty here.

Let's simplify this expression: cot2(x)1x2=cos2(x)sin2(x)1x2=x2cos2(x)sin2(x)x2sin2(x)=(xcos(x)+sin(x))(xcos(x)sin(x))x2sin2(x)={{\cot}}^{{2}}{\left({x}\right)}-\frac{{1}}{{{x}}^{{2}}}=\frac{{{{\cos}}^{{2}}{\left({x}\right)}}}{{{{\sin}}^{{2}}{\left({x}\right)}}}-\frac{{1}}{{{x}}^{{2}}}=\frac{{{{x}}^{{2}}{{\cos}}^{{2}}{\left({x}\right)}-{{\sin}}^{{2}}{\left({x}\right)}}}{{{{x}}^{{2}}{{\sin}}^{{2}}{\left({x}\right)}}}=\frac{{{\left({x}{\cos{{\left({x}\right)}}}+{\sin{{\left({x}\right)}}}\right)}{\left({x}{\cos{{\left({x}\right)}}}-{\sin{{\left({x}\right)}}}\right)}}}{{{{x}}^{{2}}{{\sin}}^{{2}}{\left({x}\right)}}}=

=xcos(x)+sin(x)xxcos(x)sin(x)xsin2(x)=\frac{{{x}{\cos{{\left({x}\right)}}}+{\sin{{\left({x}\right)}}}}}{{{x}}}\cdot\frac{{{x}{\cos{{\left({x}\right)}}}-{\sin{{\left({x}\right)}}}}}{{{x}{{\sin}}^{{2}}{\left({x}\right)}}}.

We can found limit of first factor very easy: limx0xcos(x)+sin(x)x=limx0(cos(x)+sin(x)x)=cos(0)+1=2\lim_{{{x}\to{0}}}\frac{{{x}{\cos{{\left({x}\right)}}}+{\sin{{\left({x}\right)}}}}}{{x}}=\lim_{{{x}\to{0}}}{\left({\cos{{\left({x}\right)}}}+\frac{{{\sin{{\left({x}\right)}}}}}{{x}}\right)}={\cos{{\left({0}\right)}}}+{1}={2}.

Limit of second factor is indeterminate form of type 00\frac{{0}}{{0}} so we can apply L'Hopital's Rule:

limx0xcos(x)sin(x)xsin2(x)=limx0(xcos(x)sin(x))(xsin2(x))=limx0cos(x)xsin(x)cos(x)sin2(x)+2xsin(x)cos(x)=\lim_{{{x}\to{0}}}\frac{{{x}{\cos{{\left({x}\right)}}}-{\sin{{\left({x}\right)}}}}}{{{x}{{\sin}}^{{2}}{\left({x}\right)}}}=\lim_{{{x}\to{0}}}\frac{{{\left({x}{\cos{{\left({x}\right)}}}-{\sin{{\left({x}\right)}}}\right)}'}}{{{\left({x}{{\sin}}^{{2}}{\left({x}\right)}\right)}'}}=\lim_{{{x}\to{0}}}\frac{{{\cos{{\left({x}\right)}}}-{x}{\sin{{\left({x}\right)}}}-{\cos{{\left({x}\right)}}}}}{{{{\sin}}^{{2}}{\left({x}\right)}+{2}{x}{\sin{{\left({x}\right)}}}{\cos{{\left({x}\right)}}}}}=

=limx0xsin(x)+2xcos(x)=limx01sin(x)x+2cos(x)=11+2cos(0)=13=\lim_{{{x}\to{0}}}\frac{{-{x}}}{{{\sin{{\left({x}\right)}}}+{2}{x}{\cos{{\left({x}\right)}}}}}=\lim_{{{x}\to{0}}}\frac{{-{1}}}{{\frac{{{\sin{{\left({x}\right)}}}}}{{x}}+{2}{\cos{{\left({x}\right)}}}}}=\frac{{-{1}}}{{{1}+{2}\cdot{\cos{{\left({0}\right)}}}}}=-\frac{{1}}{{3}}.

Therefore,

limx0(cot2(x)1x2)=limx0(xcos(x)+sin(x)xxcos(x)sin(x)xsin2(x))=\lim_{{{x}\to{0}}}{\left({{\cot}}^{{2}}{\left({x}\right)}-\frac{{1}}{{{x}}^{{2}}}\right)}=\lim_{{{x}\to{0}}}{\left(\frac{{{x}{\cos{{\left({x}\right)}}}+{\sin{{\left({x}\right)}}}}}{{{x}}}\cdot\frac{{{x}{\cos{{\left({x}\right)}}}-{\sin{{\left({x}\right)}}}}}{{{x}{{\sin}}^{{2}}{\left({x}\right)}}}\right)}=

=limx0xcos(x)sin(x)xlimx0xcos(x)+sin(x)xsin2(x)=2(13)=23=\lim_{{{x}\to{0}}}\frac{{{x}{\cos{{\left({x}\right)}}}-{\sin{{\left({x}\right)}}}}}{{{x}}}\cdot\lim_{{{x}\to{0}}}\frac{{{x}{\cos{{\left({x}\right)}}}+{\sin{{\left({x}\right)}}}}}{{{x}{{\sin}}^{{2}}{\left({x}\right)}}}={2}\cdot{\left(-\frac{{1}}{{3}}\right)}=-\frac{{2}}{{3}}.

Indeterminate Powers

Several indeterminate forms arise from the limxa(f(x))g(x)\lim_{{{x}\to{a}}}{{\left({f{{\left({x}\right)}}}\right)}}^{{{g{{\left({x}\right)}}}}}.

  1. limxaf(x)=0\lim_{{{x}\to{a}}}{f{{\left({x}\right)}}}={0} and limxag(x)=0\lim_{{{x}\to{a}}}{g{{\left({x}\right)}}}={0} give indeterminate form of type 00{{0}}^{{0}} (it is indeterminate because 0x=0{{0}}^{{x}}={0} for any x>0{x}>{0} but x0=1{{x}}^{{0}}={1} for any x0{x}\ne{0} ).
  2. limxaf(x)=\lim_{{{x}\to{a}}}{f{{\left({x}\right)}}}=\infty and limxag(x)=0\lim_{{{x}\to{a}}}{g{{\left({x}\right)}}}={0} give indeterminate form of type 0{\infty}^{{0}}.
  3. limxaf(x)=1\lim_{{{x}\to{a}}}{f{{\left({x}\right)}}}={1} and limxag(x)=±\lim_{{{x}\to{a}}}{g{{\left({x}\right)}}}=\pm\infty give indeterminate form of type 1{{1}}^{{\infty}}.

Each of these three cases can be treated either by:

  1. Taking the natural logarithm: let y=(f(x))g(x){y}={{\left({f{{\left({x}\right)}}}\right)}}^{{{g{{\left({x}\right)}}}}} then ln(y)=ln((f(x))g(x))=g(x)ln(f(x)){\ln{{\left({y}\right)}}}={\ln{{\left({{\left({f{{\left({x}\right)}}}\right)}}^{{{g{{\left({x}\right)}}}}}\right)}}}={g{{\left({x}\right)}}}{\ln{{\left({f{{\left({x}\right)}}}\right)}}}.
  2. Writing the function as an exponential: (f(x))g(x)=eg(x)ln(f(x)){{\left({f{{\left({x}\right)}}}\right)}}^{{{g{{\left({x}\right)}}}}}={{e}}^{{{g{{\left({x}\right)}}}{\ln{{\left({f{{\left({x}\right)}}}\right)}}}}}.

In either method we are led to the indeterminate product g(x)ln(f(x)){g{{\left({x}\right)}}}{\ln{{\left({f{{\left({x}\right)}}}\right)}}}, which is of type 0{0}\cdot\infty.

Example 4. Find limx0+(1+sin(2x))cot(x)\lim_{{{x}\to{{0}}^{+}}}{{\left({1}+{\sin{{\left({2}{x}\right)}}}\right)}}^{{{\cot{{\left({x}\right)}}}}}.

First, make sure that this is indeterminate limit: since 1+sin(2x)1{1}+{\sin{{\left({2}{x}\right)}}}\to{1} and cot(x){\cot{{\left({x}\right)}}}\to\infty as x0+{x}\to{{0}}^{+} then this is indeterminate form of type 1{{1}}^{{\infty}}.

Let y=(1+sin(2x))cot(x){y}={{\left({1}+{\sin{{\left({2}{x}\right)}}}\right)}}^{{{\cot{{\left({x}\right)}}}}} then ln(y)=cot(x)ln(1+sin(2x))=ln(1+sin(2x))tan(x){\ln{{\left({y}\right)}}}={\cot{{\left({x}\right)}}}{\ln{{\left({1}+{\sin{{\left({2}{x}\right)}}}\right)}}}=\frac{{{\ln{{\left({1}+{\sin{{\left({2}{x}\right)}}}\right)}}}}}{{{\tan{{\left({x}\right)}}}}}.

Since ln(1+sin(2x))0{\ln{{\left({1}+{\sin{{\left({2}{x}\right)}}}\right)}}}\to{0} and tan(x)0{\tan{{\left({x}\right)}}}\to{0} as x0+{x}\to{{0}}^{+}, we have indeterminate form of type 00\frac{{0}}{{0}} and can apply L'Hopital's Rule:

limx0+ln(y)=limx0+ln(1+sin(2x))tan(x)=limx0+(ln(1+sin(2x)))(tan(x))=\lim_{{{x}\to{{0}}^{+}}}{\ln{{\left({y}\right)}}}=\lim_{{{x}\to{{0}}^{+}}}\frac{{{\ln{{\left({1}+{\sin{{\left({2}{x}\right)}}}\right)}}}}}{{{\tan{{\left({x}\right)}}}}}=\lim_{{{x}\to{{0}}^{+}}}\frac{{{\left({\ln{{\left({1}+{\sin{{\left({2}{x}\right)}}}\right)}}}\right)}'}}{{{\left({\tan{{\left({x}\right)}}}\right)}'}}=

=limx0+2cos(2x)1+sin(2x)sec2(x)=2=\lim_{{{x}\to{{0}}^{+}}}\frac{{\frac{{{2}{\cos{{\left({2}{x}\right)}}}}}{{{1}+{\sin{{\left({2}{x}\right)}}}}}}}{{{{\sec}}^{{2}}{\left({x}\right)}}}={2}.

We found limit of ln(y){\ln{{\left({y}\right)}}}, but we need limit of y{y}, so

limx0+(1+sin(2x))cot(x)=limx0+y=limx0+eln(y)=elimx0+ln(y)=e2\lim_{{{x}\to{{0}}^{+}}}{{\left({1}+{\sin{{\left({2}{x}\right)}}}\right)}}^{{{\cot{{\left({x}\right)}}}}}=\lim_{{{x}\to{{0}}^{+}}}{y}=\lim_{{{x}\to{{0}}^{+}}}{{e}}^{{{\ln{{\left({y}\right)}}}}}={{e}}^{{\lim_{{{x}\to{{0}}^{+}}}{\ln{{\left({y}\right)}}}}}={{e}}^{{2}}.

Example 5. Calculate limx0+xx\lim_{{{x}\to{{0}}^{+}}}{{x}}^{{x}}.

Notice that this is indeterminate form of type 00{{0}}^{{0}}. We can proceed as in Example 4, but let's do it in another way:

limx0+xx=limx0+eln(xx)=limx0+exln(x)=elimx0+xln(x)=e0=1\lim_{{{x}\to{{0}}^{+}}}{{x}}^{{x}}=\lim_{{{x}\to{{0}}^{+}}}{{e}}^{{{\ln{{\left({{x}}^{{x}}\right)}}}}}=\lim_{{{x}\to{{0}}^{+}}}{{e}}^{{{x}{\ln{{\left({x}\right)}}}}}={{e}}^{{\lim_{{{x}\to{{0}}^{+}}}{x}{\ln{{\left({x}\right)}}}}}={{e}}^{{0}}={1} because limx0+xln(x)=0\lim_{{{x}\to{{0}}^{+}}}{x}{\ln{{\left({x}\right)}}}={0}.

Example 6. Find limx0(sin(x)x)11cos(x)\lim_{{{x}\to{0}}}{{\left(\frac{{\sin{{\left({x}\right)}}}}{{x}}\right)}}^{{\frac{{1}}{{{1}-{\cos{{\left({x}\right)}}}}}}}.

Here we have indeterminate form of type 1{{1}}^{\infty}.

Let y=(sin(x)x)11cos(x){y}={{\left(\frac{{\sin{{\left({x}\right)}}}}{{x}}\right)}}^{{\frac{{1}}{{{1}-{\cos{{\left({x}\right)}}}}}}}. We can consider the case x>0{x}>{0} (because y{y} is odd function).

So, we have that ln(y)=ln((sin(x)x)11cos(x))=11cos(x)ln(sin(x)x)=ln(sin(x))ln(x)1cos(x){\ln{{\left({y}\right)}}}={\ln{{\left({{\left(\frac{{\sin{{\left({x}\right)}}}}{{x}}\right)}}^{{\frac{{1}}{{{1}-{\cos{{\left({x}\right)}}}}}}}\right)}}}=\frac{{1}}{{{1}-{\cos{{\left({x}\right)}}}}}{\ln{{\left(\frac{{\sin{{\left({x}\right)}}}}{{x}}\right)}}}=\frac{{{\ln{{\left({\sin{{\left({x}\right)}}}\right)}}}-{\ln{{\left({x}\right)}}}}}{{{1}-{\cos{{\left({x}\right)}}}}}.

Now, applying of L'Hopital's Rule gives the following:

limx0ln(y)=limx0ln(sin(x))ln(x)1cos(x)=limx0(ln(sin(x))ln(x))(1cos(x))=limx0cos(x)sin(x)1xsin(x)=\lim_{{{x}\to{0}}}{\ln{{\left({y}\right)}}}=\lim_{{{x}\to{0}}}\frac{{{\ln{{\left({\sin{{\left({x}\right)}}}\right)}}}-{\ln{{\left({x}\right)}}}}}{{{1}-{\cos{{\left({x}\right)}}}}}=\lim_{{{x}\to{0}}}\frac{{{\left({\ln{{\left({\sin{{\left({x}\right)}}}\right)}}}-{\ln{{\left({x}\right)}}}\right)}'}}{{{\left({1}-{\cos{{\left({x}\right)}}}\right)}'}}=\lim_{{{x}\to{0}}}\frac{{\frac{{{\cos{{\left({x}\right)}}}}}{{{\sin{{\left({x}\right)}}}}}-\frac{{1}}{{x}}}}{{{\sin{{\left({x}\right)}}}}}=

=limx0xcos(x)sin(x)xsin2(x)=13=\lim_{{{x}\to{0}}}\frac{{{x}{\cos{{\left({x}\right)}}}-{\sin{{\left({x}\right)}}}}}{{{x}{{\sin}}^{{2}}{\left({x}\right)}}}=-\frac{{1}}{{3}} (as was found in Example 3).

So, limx0y=e13=1e3\lim_{{{x}\to{0}}}{y}={{e}}^{{-\frac{{1}}{{3}}}}=\frac{{1}}{{{\sqrt[{{3}}]{{{e}}}}}}.

Example 7. Find limx(π2arctan(x))1ln(x)\lim_{{{x}\to\infty}}{{\left(\frac{\pi}{{2}}-{\operatorname{arctan}{{\left({x}\right)}}}\right)}}^{{\frac{{1}}{{\ln{{\left({x}\right)}}}}}}.

Since π2arctan(x)0\frac{\pi}{{2}}-{\operatorname{arctan}{{\left({x}\right)}}}\to{0} and 1ln(x)0\frac{{1}}{{{\ln{{\left({x}\right)}}}}}\to{0} as x{x}\to\infty, we have indeterminate form of type 00{{0}}^{{0}}.

Let y=(π2arctan(x))1ln(x){y}={{\left(\frac{\pi}{{2}}-{\operatorname{arctan}{{\left({x}\right)}}}\right)}}^{{\frac{{1}}{{{\ln{{\left({x}\right)}}}}}}}, then ln(y)=ln((π2arctan(x))1ln(x))=1ln(x)ln(π2arctan(x)){\ln{{\left({y}\right)}}}={\ln{{\left({{\left(\frac{\pi}{{2}}-{\operatorname{arctan}{{\left({x}\right)}}}\right)}}^{{\frac{{1}}{{{\ln{{\left({x}\right)}}}}}}}\right)}}}=\frac{{1}}{{{\ln{{\left({x}\right)}}}}}{\ln{{\left(\frac{\pi}{{2}}-{\operatorname{arctan}{{\left({x}\right)}}}\right)}}}.

So, limxln(y)=limxln(π2arctan(x))ln(x)=limx(ln(π2arctan(x)))(ln(x))=limx1π2arctan(x)(11+x2)1x=\lim_{{{x}\to\infty}}{\ln{{\left({y}\right)}}}=\lim_{{{x}\to\infty}}\frac{{{\ln{{\left(\frac{\pi}{{2}}-{\operatorname{arctan}{{\left({x}\right)}}}\right)}}}}}{{{\ln{{\left({x}\right)}}}}}=\lim_{{{x}\to\infty}}\frac{{{\left({\ln{{\left(\frac{\pi}{{2}}-{\operatorname{arctan}{{\left({x}\right)}}}\right)}}}\right)}'}}{{{\left({\ln{{\left({x}\right)}}}\right)}'}}=\lim_{{{x}\to\infty}}\frac{{\frac{{1}}{{\frac{\pi}{{2}}-{\operatorname{arctan}{{\left({x}\right)}}}}}\cdot{\left(-\frac{{1}}{{{1}+{{x}}^{{2}}}}\right)}}}{{\frac{{1}}{{x}}}}=

=limxx1+x2arctan(x)π2=\lim_{{{x}\to\infty}}\frac{{\frac{{x}}{{{1}+{{x}}^{{2}}}}}}{{{\operatorname{arctan}{{\left({x}\right)}}}-\frac{\pi}{{2}}}}.

On this stage we obtained indeterminate form of type 00\frac{{0}}{{0}} so we apply L'Hopital's Rule once more:

limxx1+x2arctan(x)π2=limx(x1+x2)(arctan(x)π2)=limx1x2(1+x2)211+x2=limx1x21+x2=limxx2(1+1x2)x2(11x2)=\lim_{{{x}\to\infty}}\frac{{\frac{{x}}{{{1}+{{x}}^{{2}}}}}}{{{\operatorname{arctan}{{\left({x}\right)}}}-\frac{\pi}{{2}}}}=\lim_{{{x}\to\infty}}\frac{{{\left(\frac{{x}}{{{1}+{{x}}^{{2}}}}\right)}'}}{{{\left({\operatorname{arctan}{{\left({x}\right)}}}-\frac{\pi}{{2}}\right)}'}}=\lim_{{{x}\to\infty}}\frac{{\frac{{{1}-{{x}}^{{2}}}}{{{{\left({1}+{{x}}^{{2}}\right)}}^{{2}}}}}}{{\frac{{1}}{{{1}+{{x}}^{{2}}}}}}=\lim_{{{x}\to\infty}}\frac{{{1}-{{x}}^{{2}}}}{{{1}+{{x}}^{{2}}}}=\lim_{{{x}\to\infty}}\frac{{{{x}}^{{2}}{\left(-{1}+\frac{{1}}{{{x}}^{{2}}}\right)}}}{{{{x}}^{{2}}{\left({1}-\frac{{1}}{{{x}}^{{2}}}\right)}}}=

=limx1+1x21+1x2=1=\lim_{{{x}\to\infty}}\frac{{-{1}+\frac{{1}}{{{x}}^{{2}}}}}{{{1}+\frac{{1}}{{{x}}^{{2}}}}}=-{1}.

So, limx(π2arctan(x))1ln(x)=limxy=limxeln(y)=elimxln(y)=e1=1e\lim_{{{x}\to\infty}}{{\left(\frac{\pi}{{2}}-{\operatorname{arctan}{{\left({x}\right)}}}\right)}}^{{\frac{{1}}{{{\ln{{\left({x}\right)}}}}}}}=\lim_{{{x}\to\infty}}{y}=\lim_{{{x}\to\infty}}{{e}}^{{{\ln{{\left({y}\right)}}}}}={{e}}^{{\lim_{{{x}\to\infty}}{\ln{{\left({y}\right)}}}}}={{e}}^{{-{1}}}=\frac{{1}}{{e}}.