Indeterminate Forms for Functions

In the note Limits Involving Infinity we saw that it is pretty easy to evaluate limx0x+1x\lim_{{{x}\to{0}}}\frac{{{x}+{1}}}{{x}} because since limx0(x+1)=1\lim_{{{x}\to{0}}}{\left({x}+{1}\right)}={1} and limx0x=0\lim_{{{x}\to{0}}}{x}={0} then division of 1 by very small number will give very large number, and so limx0x+1x=\lim_{{{x}\to{0}}}\frac{{{x}+{1}}}{{x}}=\infty.

But there are some cases when it is not so easy to calculate limit. In fact we can't state limit in general without knowing functions.

There are 4 cases.

Case 1. Suppose that limxaf(x)=0\lim_{{{x}\to{a}}}{f{{\left({x}\right)}}}={0} and limxag(x)=0\lim_{{{x}\to{a}}}{g{{\left({x}\right)}}}={0}. We need to find limxaf(x)g(x)\lim_{{{x}\to{a}}}\frac{{f{{\left({x}\right)}}}}{{g{{\left({x}\right)}}}}.

It is not very clear what is the limit of the ratio and does it exist at all. Very small number divided by the very small number can give anything.

Let f(x)=1x{f{{\left({x}\right)}}}=\frac{{1}}{{x}} and g(x)=1x2{g{{\left({x}\right)}}}=\frac{{1}}{{{x}}^{{2}}}. Clearly limx1x=0\lim_{{{x}\to\infty}}\frac{{1}}{{x}}={0} and limx1x2=0\lim_{{{x}\to\infty}}\frac{{1}}{{{x}}^{{2}}}={0}. Then limxf(x)g(x)=limx1x1x2=limxx=\lim_{{{x}\to\infty}}\frac{{{f{{\left({x}\right)}}}}}{{{g{{\left({x}\right)}}}}}=\lim_{{{x}\to\infty}}\frac{{\frac{{1}}{{x}}}}{{\frac{{1}}{{{x}}^{{2}}}}}=\lim_{{{x}\to\infty}}{x}=\infty.

Let f(x)=1x2{f{{\left({x}\right)}}}=\frac{{1}}{{{x}}^{{2}}} and g(x)=1x{g{{\left({x}\right)}}}=\frac{{1}}{{x}}. Clearly limx1x2=0\lim_{{{x}\to\infty}}\frac{{1}}{{{x}}^{{2}}}={0} and limx1x=0\lim_{{{x}\to\infty}}\frac{{1}}{{x}}={0}. Then limxf(x)g(x)=limx1x21x=limx1x=0\lim_{{{x}\to\infty}}\frac{{{f{{\left({x}\right)}}}}}{{{g{{\left({x}\right)}}}}}=\lim_{{{x}\to\infty}}\frac{{\frac{{1}}{{{x}}^{{2}}}}}{{\frac{{1}}{{x}}}}=\lim_{{{x}\to\infty}}\frac{{1}}{{x}}={0}.

Let f(x)=3x{f{{\left({x}\right)}}}=\frac{{3}}{{x}} and g(x)=1x{g{{\left({x}\right)}}}=\frac{{1}}{{x}}. Clearly limx3x=0\lim_{{{x}\to\infty}}\frac{{3}}{{x}}={0} and limx1x=0\lim_{{{x}\to\infty}}\frac{{1}}{{x}}={0}. Then limxf(x)g(x)=limx3x1x=limx3=3\lim_{{{x}\to\infty}}\frac{{{f{{\left({x}\right)}}}}}{{{g{{\left({x}\right)}}}}}=\lim_{{{x}\to\infty}}\frac{{\frac{{3}}{{x}}}}{{\frac{{1}}{{x}}}}=\lim_{{{x}\to\infty}}{3}={3}.

Let f(x)=x{f{{\left({x}\right)}}}={x} and g(x)=x2{g{{\left({x}\right)}}}={{x}}^{{2}}. Clearly limx0x=0\lim_{{{x}\to{0}}}{x}={0} and limx0x2=0\lim_{{{x}\to{0}}}{{x}}^{{2}}={0}. Then limxf(x)g(x)=limxxx2=limx01x\lim_{{{x}\to\infty}}\frac{{{f{{\left({x}\right)}}}}}{{{g{{\left({x}\right)}}}}}=\lim_{{{x}\to\infty}}\frac{{x}}{{{{x}}^{{2}}}}=\lim_{{{x}\to{0}}}\frac{{1}}{{x}} doesn't exist because limx0+1x=\lim_{{{x}\to{{0}}^{+}}}\frac{{1}}{{x}}=\infty and limx01x=\lim_{{{x}\to{{0}}^{{-}}}}\frac{{1}}{{x}}=-\infty so one-sided limits are not equal.

Therefore, in general case we can't find limit of ratio without knowing functions.

To characterize this special case we say that when limxaf(x)=0\lim_{{{x}\to{a}}}{f{{\left({x}\right)}}}={0} and limxag(x)=0\lim_{{{x}\to{a}}}{g{{\left({x}\right)}}}={0}, expression limxaf(x)g(x)\lim_{{{x}\to{a}}}\frac{{{f{{\left({x}\right)}}}}}{{{g{{\left({x}\right)}}}}} is indeterminate form of type 00\frac{0}{0}.

Case 2. Suppose that limxaf(x)=±\lim_{{{x}\to{a}}}{f{{\left({x}\right)}}}=\pm\infty and limxag(x)=±\lim_{{{x}\to{a}}}{g{{\left({x}\right)}}}=\pm\infty. We need to find limxaf(x)g(x)\lim_{{{x}\to{a}}}\frac{{{f{{\left({x}\right)}}}}}{{{g{{\left({x}\right)}}}}}.

Again it is not very clear what is the limit of the ratio and does it exist at all. Very large number divided by the very large number can give anything.

Let f(x)=1x2{f{{\left({x}\right)}}}=\frac{{1}}{{{x}}^{{2}}} and g(x)=1x4{g{{\left({x}\right)}}}=\frac{{1}}{{{x}}^{{4}}}. Clearly limx01x2=\lim_{{{x}\to{0}}}\frac{{1}}{{{x}}^{{2}}}=\infty and limx01x4=\lim_{{{x}\to{0}}}\frac{{1}}{{{x}}^{{4}}}=\infty. Then limx0f(x)g(x)=limx01x21x4=limx0x2=0\lim_{{{x}\to{0}}}\frac{{{f{{\left({x}\right)}}}}}{{{g{{\left({x}\right)}}}}}=\lim_{{{x}\to{0}}}\frac{{\frac{{1}}{{{x}}^{{2}}}}}{{\frac{{1}}{{{x}}^{{4}}}}}=\lim_{{{x}\to{0}}}{{x}}^{{2}}={0}.

Let f(x)=1x4{f{{\left({x}\right)}}}=\frac{{1}}{{{x}}^{{4}}} and g(x)=1x2{g{{\left({x}\right)}}}=\frac{{1}}{{{x}}^{{2}}}. Clearly limx01x4=\lim_{{{x}\to{0}}}\frac{{1}}{{{x}}^{{4}}}=\infty and limx01x2=\lim_{{{x}\to{0}}}\frac{{1}}{{{x}}^{{2}}}=\infty. Then limx0f(x)g(x)=limx01x41x2=limx01x2=\lim_{{{x}\to{0}}}\frac{{{f{{\left({x}\right)}}}}}{{{g{{\left({x}\right)}}}}}=\lim_{{{x}\to{0}}}\frac{{\frac{{1}}{{{x}}^{{4}}}}}{{\frac{{1}}{{{x}}^{{2}}}}}=\lim_{{{x}\to{0}}}\frac{{1}}{{{x}}^{{2}}}=\infty.

Let f(x)=2x2{f{{\left({x}\right)}}}=\frac{{2}}{{{x}}^{{2}}} and g(x)=1x2{g{{\left({x}\right)}}}=\frac{{1}}{{{x}}^{{2}}}. Clearly limx02x2=\lim_{{{x}\to{0}}}\frac{{2}}{{{x}}^{{2}}}=\infty and limx01x2=\lim_{{{x}\to{0}}}\frac{{1}}{{{x}}^{{2}}}=\infty. Then limx0f(x)g(x)=limx02x21x2=limx02=2\lim_{{{x}\to{0}}}\frac{{{f{{\left({x}\right)}}}}}{{{g{{\left({x}\right)}}}}}=\lim_{{{x}\to{0}}}\frac{{\frac{{2}}{{{x}}^{{2}}}}}{{\frac{{1}}{{{x}}^{{2}}}}}=\lim_{{{x}\to{0}}}{2}={2}.

Again, in general case we can't find limit of ratio without knowing functions.

To characterize this special case we say that when limxaf(x)=±\lim_{{{x}\to{a}}}{f{{\left({x}\right)}}}=\pm\infty and limxag(x)=±\lim_{{{x}\to{a}}}{g{{\left({x}\right)}}}=\pm\infty, expression limxaf(x)g(x)\lim_{{{x}\to{a}}}\frac{{{f{{\left({x}\right)}}}}}{{{g{{\left({x}\right)}}}}} is indeterminate form of type \frac{\infty}{\infty}.

Actually we can trasnform this indeterminate form in indeterminate form of type 00\frac{{0}}{{0}}.

Indeed, since limxaf(x)=\lim_{{{x}\to{a}}}{f{{\left({x}\right)}}}=\infty and limxag(x)=\lim_{{{x}\to{a}}}{g{{\left({x}\right)}}}=\infty then limxa1f(x)=0\lim_{{{x}\to{a}}}\frac{{1}}{{{f{{\left({x}\right)}}}}}={0} and limxa1g(x)=0\lim_{{{x}\to{a}}}\frac{{1}}{{{g{{\left({x}\right)}}}}}={0}.

So, limxaf(x)g(x)=limxa1g(x)1f(x)\lim_{{{x}\to{a}}}\frac{{{f{{\left({x}\right)}}}}}{{{g{{\left({x}\right)}}}}}=\lim_{{{x}\to{a}}}\frac{{\frac{{1}}{{{g{{\left({x}\right)}}}}}}}{{\frac{{1}}{{{f{{\left({x}\right)}}}}}}}.

Case 3. Suppose that limxaf(x)=0\lim_{{{x}\to{a}}}{f{{\left({x}\right)}}}={0} and limxag(x)=±\lim_{{{x}\to{a}}}{g{{\left({x}\right)}}}=\pm\infty. We need to find limxaf(x)g(x)\lim_{{{x}\to{a}}}{f{{\left({x}\right)}}}{g{{\left({x}\right)}}}.

Again it is not very clear what is the product of very small number and very large number.

This case can be transformed either into case 1 or into case 2.

Indeed, since limxaf(x)=0\lim_{{{x}\to{a}}}{f{{\left({x}\right)}}}={0} then limxa1f(x)=\lim_{{{x}\to{a}}}\frac{{1}}{{{f{{\left({x}\right)}}}}}=\infty. Therefore, we can write product as indeterminate form of type \frac{{\infty}}{{\infty}}: limxaf(x)g(x)=limxag(x)1f(x)\lim_{{{x}\to{a}}}{f{{\left({x}\right)}}}{g{{\left({x}\right)}}}=\lim_{{{x}\to{a}}}\frac{{{g{{\left({x}\right)}}}}}{{\frac{{1}}{{{f{{\left({x}\right)}}}}}}}.

Similarly, since limxag(x)=0\lim_{{{x}\to{a}}}{g{{\left({x}\right)}}}={0} then limxa1g(x)=0\lim_{{{x}\to{a}}}\frac{{1}}{{{g{{\left({x}\right)}}}}}={0}. Therefore, we can write product as indeterminate form of type 00\frac{{{0}}}{{{0}}}: limxaf(x)g(x)=limxaf(x)1g(x)\lim_{{{x}\to{a}}}{f{{\left({x}\right)}}}{g{{\left({x}\right)}}}=\lim_{{{x}\to{a}}}\frac{{{f{{\left({x}\right)}}}}}{{\frac{{1}}{{{g{{\left({x}\right)}}}}}}}.

So, we have third indeterminate form: indeterminate form of type 00\cdot\infty.

Case 4. Finally, suppose that limxaf(x)=\lim_{{{x}\to{a}}}{f{{\left({x}\right)}}}=\infty and limxag(x)=\lim_{{{x}\to{a}}}{g{{\left({x}\right)}}}=\infty. We need to find limxa(f(x)g(x))\lim_{{{x}\to{a}}}{\left({f{{\left({x}\right)}}}-{g{{\left({x}\right)}}}\right)}.

Again it is not clear what will be difference of very large numbers.

Let f(x)=x{f{{\left({x}\right)}}}={x} and g(x)=2x{g{{\left({x}\right)}}}={2}{x}. Clearly limxx=\lim_{{{x}\to\infty}}{x}=\infty and limx2x=\lim_{{{x}\to\infty}}{2}{x}=\infty. Then limx(f(x)g(x))=limx(x2x)=limxx=\lim_{{{x}\to\infty}}{\left({f{{\left({x}\right)}}}-{g{{\left({x}\right)}}}\right)}=\lim_{{{x}\to\infty}}{\left({x}-{2}{x}\right)}=\lim_{{{x}\to\infty}}-{x}=-\infty.

Let f(x)=3x{f{{\left({x}\right)}}}={3}{x} and g(x)=x{g{{\left({x}\right)}}}={x}. Clearly limx3x=\lim_{{{x}\to\infty}}{3}{x}=\infty and limxx=\lim_{{{x}\to\infty}}{x}=\infty. Then limx(f(x)g(x))=limx(3xx)=limx2x=\lim_{{{x}\to\infty}}{\left({f{{\left({x}\right)}}}-{g{{\left({x}\right)}}}\right)}=\lim_{{{x}\to\infty}}{\left({3}{x}-{x}\right)}=\lim_{{{x}\to\infty}}{2}{x}=\infty.

Let f(x)=x+5{f{{\left({x}\right)}}}={x}+{5} and g(x)=x{g{{\left({x}\right)}}}={x}. Clearly limx(x+5)=\lim_{{{x}\to\infty}}{\left({x}+{5}\right)}=\infty and limxx=\lim_{{{x}\to\infty}}{x}=\infty. Then limx(f(x)g(x))=limx(x+5x)=limx5=5\lim_{{{x}\to\infty}}{\left({f{{\left({x}\right)}}}-{g{{\left({x}\right)}}}\right)}=\lim_{{{x}\to\infty}}{\left({x}+{5}-{x}\right)}=\lim_{{{x}\to\infty}}{5}={5}.

So we can't find limit of difference without knowing functions.

To characterize this special case we say that when limxaf(x)=\lim_{{{x}\to{a}}}{f{{\left({x}\right)}}}=\infty and limxag(x)=\lim_{{{x}\to{a}}}{g{{\left({x}\right)}}}=\infty, expression limxa((f(x))(g(x)))\lim_{{{x}\to{a}}}{\left({\left({f{{\left({x}\right)}}}\right)}-{\left({g{{\left({x}\right)}}}\right)}\right)} is indeterminate form of type \infty-\infty.

So, we have seen four types of indeterminate forms. In these cases we need to know sequences f(x){f{{\left({x}\right)}}} and g(x){g{{\left({x}\right)}}}. To get rid of indetermination it is often useful to perform algebraic manipulations. Now, let's go through a couple of examples.

Example 1. Find limx(3x25x)\lim_{{{x}\to\infty}}{\left({3}{{x}}^{{2}}-{5}{x}\right)}.

Since limx3x2=\lim_{{{x}\to\infty}}{3}{{x}}^{{2}}=\infty and limx5x=\lim_{{{x}\to\infty}}{5}{x}=\infty we have indeterminate form of type \infty-\infty.

To handle it, let's perform algebraic manipulations: 3x25x=x2(35x){3}{{x}}^{{2}}-{5}{x}={{x}}^{{2}}{\left({3}-\frac{{5}}{{x}}\right)}.

Now, since limxx2=\lim_{{{x}\to\infty}}{{x}}^{{2}}=\infty and limx(35x)=3\lim_{{{x}\to\infty}}{\left({3}-\frac{{5}}{{x}}\right)}={3} then their product is also very large number: limx(3x25x)=\lim_{{{x}\to\infty}}{\left({3}{{x}}^{{2}}-{5}{x}\right)}=\infty.

Example 2. Find limx(4x3+5x2)\lim_{{{x}\to\infty}}{\left(-{4}{{x}}^{{3}}+{5}{{x}}^{{2}}\right)}.

Since limx4x3=\lim_{{{x}\to\infty}}-{4}{{x}}^{{3}}=-\infty and limx5x2=\lim_{{{x}\to\infty}}{5}{{x}}^{{2}}=\infty we have indeterminate form of type \infty-\infty.

To handle it, let's perform algebraic manipulations: 4x2+5x2=x3(4+5x)-{4}{{x}}^{{2}}+{5}{{x}}^{{2}}={{x}}^{{3}}{\left(-{4}+\frac{{5}}{{x}}\right)}.

Now, since limxx3=\lim_{{{x}\to\infty}}{{x}}^{{3}}=\infty and limx(4+5x)=4\lim_{{{x}\to\infty}}{\left(-{4}+\frac{{5}}{{x}}\right)}=-{4} then limx(4x3+5x)=\lim_{{{x}\to\infty}}{\left(-{4}{{x}}^{{3}}+{5}{x}\right)}=-\infty.

Example 3. Find limx(a0xk+a1xk1++ak1x+ak)\lim_{{{x}\to\infty}}{\left({a}_{{0}}{{x}}^{{k}}+{a}_{{1}}{{x}}^{{{k}-{1}}}+\ldots+{a}_{{{k}-{1}}}{x}+{a}_{{k}}\right)}, where a0,a1,ak{a}_{{0}},{a}_{{1}},\ldots{a}_{{k}} are constants.

This is generalization of above two examples. If all coefficients a0,a1,,ak{a}_{{0}},{a}_{{1}},\ldots,{a}_{{k}} have same sign then limit of this sequence is \infty (or -\infty). But if coeffcients have different signs then we have indeterminate form of type \infty-\infty.

To handle it, let's perform algebraic manipulations: a0xk+a1xk1++ak1x+ak=xk(a0+a1x++ak1xk1+akxk){a}_{{0}}{{x}}^{{k}}+{a}_{{1}}{{x}}^{{{k}-{1}}}+\ldots+{a}_{{{k}-{1}}}{x}+{a}_{{k}}={{x}}^{{k}}{\left({a}_{{0}}+\frac{{{a}_{{1}}}}{{x}}+\ldots+\frac{{{a}_{{{k}-{1}}}}}{{{{x}}^{{{k}-{1}}}}}+\frac{{{a}_{{k}}}}{{{{x}}^{{k}}}}\right)}.

Now, since xk{{x}}^{{k}}\to\infty and a0+a1x++ak1xk1+akxka0{a}_{{0}}+\frac{{{a}_{{1}}}}{{x}}+\ldots+\frac{{{a}_{{{k}-{1}}}}}{{{{x}}^{{{k}-{1}}}}}+\frac{{{a}_{{k}}}}{{{x}}^{{k}}}\to{a}_{{0}} as x{x}\to\infty, then a0xk+a1xk1++ak1x+ak{a}_{{0}}{{x}}^{{k}}+{a}_{{1}}{{x}}^{{{k}-{1}}}+\ldots+{a}_{{{k}-{1}}}{x}+{a}_{{k}}\to\infty if a0>0{a}_{{0}}>{0} and xn{x}_{{n}}\to-\infty if a0<0{a}_{{0}}<{0}.

Example 4. Find limx3x25x7x+3\lim_{{{x}\to\infty}}\frac{{{3}{{x}}^{{2}}-{5}{x}}}{{{7}{x}+{3}}}.

Since limx(3x25x)\lim_{{{x}\to\infty}}{\left({3}{{x}}^{{2}}-{5}{x}\right)}\to\infty and limx(7x+3)\lim_{{{x}\to\infty}}{\left({7}{x}+{3}\right)}\to\infty we have indeterminate form of type \frac{{\infty}}{{\infty}}.

To handle it, let's perform algebraic manipulations. Factor out x{x} raised to the greatest degree in numerator and denominator (in this case x2{{x}}^{{2}}): 3x25x7x+3=x2(35x)x2(7x+3x2)=35x27x+3x2\frac{{{3}{{x}}^{{2}}-{5}{x}}}{{{7}{x}+{3}}}=\frac{{{{x}}^{{2}}{\left({3}-\frac{{5}}{{x}}\right)}}}{{{{x}}^{{2}}{\left(\frac{{7}}{{x}}+\frac{{3}}{{{x}}^{{2}}}\right)}}}=\frac{{{3}-\frac{{5}}{{{x}}^{{2}}}}}{{\frac{{7}}{{x}}+\frac{{3}}{{{x}}^{{2}}}}}.

Now, since 35x3{3}-\frac{{5}}{{x}}\to{3} and 7x+3x20\frac{{7}}{{x}}+\frac{{3}}{{{x}}^{{2}}}\to{0} as x{x}\to\infty, then 35x27x+3x2\frac{{{3}-\frac{{5}}{{{x}}^{{2}}}}}{{\frac{{7}}{{x}}+\frac{{3}}{{{x}}^{{2}}}}}\to\infty.

Example 5. Let limx6x43x28x7+3x\lim_{{{x}\to\infty}}\frac{{{6}{{x}}^{{4}}-{3}{{x}}^{{2}}}}{{{8}{{x}}^{{7}}+{3}{x}}}.

Since limx(6x43x2)\lim_{{{x}\to\infty}}{\left({6}{{x}}^{{4}}-{3}{{x}}^{{2}}\right)}\to\infty and limx(8x7+3x)\lim_{{{x}\to\infty}}{\left({8}{{x}}^{{7}}+{3}{x}\right)}\to\infty we have indeterminate form of type \frac{{\infty}}{{\infty}}.

To handle it, let's perform algebraic manipulations. Factor out x{x} raised to the greatest degree in numerator and denominator (in this case x7{{x}}^{{7}}): 6x43x28x7+3x=x7(6x33x5)x7(8+3x6)=6x33x58+3x6\frac{{{6}{{x}}^{{4}}-{3}{{x}}^{{2}}}}{{{8}{{x}}^{{7}}+{3}{x}}}=\frac{{{{x}}^{{7}}{\left(\frac{{6}}{{{x}}^{{3}}}-\frac{{3}}{{{x}}^{{5}}}\right)}}}{{{{x}}^{{7}}{\left({8}+\frac{{3}}{{{x}}^{{6}}}\right)}}}=\frac{{\frac{{6}}{{{x}}^{{3}}}-\frac{{3}}{{{x}}^{{5}}}}}{{{8}+\frac{{3}}{{{x}}^{{6}}}}}.

Now, since 6x33x50\frac{{6}}{{{x}}^{{3}}}-\frac{{3}}{{{x}}^{{5}}}\to{0} and 8+3x68{8}+\frac{{3}}{{{x}}^{{6}}}\to{8} as x{x}\to\infty, then limx6x33x58+3x60\lim_{{{x}\to\infty}}\frac{{\frac{{6}}{{{x}}^{{3}}}-\frac{{3}}{{{x}}^{{5}}}}}{{{8}+\frac{{3}}{{{x}}^{{6}}}}}\to{0}.

Example 6. Find limx3x25x7x2+3\lim_{{{x}\to\infty}}\frac{{{3}{{x}}^{{2}}-{5}{x}}}{{{7}{{x}}^{{2}}+{3}}}.

Since limx(3x25x)=\lim_{{{x}\to\infty}}{\left({3}{{x}}^{{2}}-{5}{x}\right)}=\infty and limx(7x2+3)=\lim_{{{x}\to\infty}}{\left({7}{{x}}^{{2}}+{3}\right)}=\infty we have indeterminate form of type \frac{{\infty}}{{\infty}}.

To handle it, let's perform algebraic manipulations. Factor out x{x} raised to the greatest degree in numerator and denominator (in this case x2{{x}}^{{2}}) 3x25x7x2+3=x2(35x)n2(7+3x2)=35x7+3x2\frac{{{3}{{x}}^{{2}}-{5}{x}}}{{{7}{{x}}^{{2}}+{3}}}=\frac{{{{x}}^{{2}}{\left({3}-\frac{{5}}{{x}}\right)}}}{{{{n}}^{{2}}{\left({7}+\frac{{3}}{{{x}}^{{2}}}\right)}}}=\frac{{{3}-\frac{{5}}{{x}}}}{{{7}+\frac{{3}}{{{x}}^{{2}}}}}.

Now, since 35x3{3}-\frac{{5}}{{x}}\to{3} and 7+3x27{7}+\frac{{3}}{{{x}}^{{2}}}\to{7} as x{x}\to\infty, then limx35x7+3x2=37\lim_{{{x}\to\infty}}\frac{{{3}-\frac{{5}}{{x}}}}{{{7}+\frac{{3}}{{{x}}^{{2}}}}}=\frac{{3}}{{7}}.

Example 7. Find limxa0xk+a1xk1++ak1x+akb0xm+b1xm1+..+bm1x+bm\lim_{{{x}\to\infty}}\frac{{{a}_{{0}}{{x}}^{{k}}+{a}_{{1}}{{x}}^{{{k}-{1}}}+\ldots+{a}_{{{k}-{1}}}{x}+{a}_{{k}}}}{{{b}_{{0}}{{x}}^{{m}}+{b}_{{1}}{{x}}^{{{m}-{1}}}+..+{b}_{{{m}-{1}}}{x}+{b}_{{m}}}} where a0,a1,,ak{a}_{{0}},{a}_{{1}},\ldots,{a}_{{k}} and b0,b1,,bm{b}_{{0}},{b}_{{1}},\ldots,{b}_{{m}} are constants.

This is generalization of above three examples. We have indeterminate form of type \frac{{\infty}}{{\infty}}.

To handle it, let's perform algebraic manipulations. Factor out xk{{x}}^{{k}} from numerator and xm{{x}}^{{m}} from denominator: a0xk+a1xk1++ak1x+akb0xm+b1xm1++bm1x+bm=xk(a0+a1x++akxk)xm(b0+b1x++bmxm)=xkm(a0+a1x++akxkb0+b1x++bmxm)\frac{{{a}_{{0}}{{x}}^{{k}}+{a}_{{1}}{{x}}^{{{k}-{1}}}+\ldots+{a}_{{{k}-{1}}}{x}+{a}_{{k}}}}{{{b}_{{0}}{{x}}^{{m}}+{b}_{{1}}{{x}}^{{{m}-{1}}}+\ldots+{b}_{{{m}-{1}}}{x}+{b}_{{m}}}}=\frac{{{{x}}^{{k}}{\left({a}_{{0}}+\frac{{{a}_{{1}}}}{{x}}+\ldots+\frac{{{a}_{{k}}}}{{{{x}}^{{k}}}}\right)}}}{{{{x}}^{{m}}{\left({b}_{{0}}+\frac{{{b}_{{1}}}}{{x}}+\ldots+\frac{{{b}_{{m}}}}{{{{x}}^{{m}}}}\right)}}}={{x}}^{{{k}-{m}}}{\left(\frac{{{a}_{{0}}+\frac{{{a}_{{1}}}}{{x}}+\ldots+\frac{{{a}_{{k}}}}{{{{x}}^{{k}}}}}}{{{b}_{{0}}+\frac{{{b}_{{1}}}}{{x}}+\ldots+\frac{{{b}_{{m}}}}{{{{x}}^{{m}}}}}}\right)}.

Second factor has limit a0b0\frac{{a}_{{0}}}{{b}_{{0}}}. If k=m{k}={m} then xkm=11{{x}}^{{{k}-{m}}}={1}\to{1} and required limit approaches a0b0\frac{{{a}_{{0}}}}{{{b}_{{0}}}}. If k>m{k}>{m} then xkm{{x}}^{{{k}-{m}}}\to\infty and required limit approaches \infty (or -\infty, sign depends on sign of a0b0\frac{{{a}_{{0}}}}{{{b}_{{0}}}}). If k<m{k}<{m} then xkm0{{x}}^{{{k}-{m}}}\to{0} and required limit approaches 0{0}.

Example 8. Find limxx(x+1x)\lim_{{{x}\to\infty}}\sqrt{{{x}}}{\left(\sqrt{{{x}+{1}}}-\sqrt{{{x}}}\right)}.

We can rewrite it as limx(xx+1xx)=limx(x2+xx)\lim_{{{x}\to\infty}}{\left(\sqrt{{{x}}}\sqrt{{{x}+{1}}}-\sqrt{{{x}}}\sqrt{{{x}}}\right)}=\lim_{{{x}\to\infty}}{\left(\sqrt{{{{x}}^{{2}}+{x}}}-{x}\right)}.

This indeterminate form of type \infty-\infty.

When we deal with radicals, we need to multiply both numerator and denominator by conjugate radical. Here we multiply both numerator and denominator by x2+x+x\sqrt{{{{x}}^{{2}}+{x}}}+{x}:

x2+xx=(x2+xx)(x2+x+x)x2+x+x=(x2+x)2x2x2+x+x=x2+xx2x2+x+x=\sqrt{{{{x}}^{{2}}+{x}}}-{x}=\frac{{{\left(\sqrt{{{{x}}^{{2}}+{x}}}-{x}\right)}{\color{red}{{{\left(\sqrt{{{{x}}^{{2}}+{x}}}+{x}\right)}}}}}}{{{\color{red}{{\sqrt{{{{x}}^{{2}}+{x}}}+\sqrt{{{x}}}}}}}}=\frac{{{{\left(\sqrt{{{{x}}^{{2}}+{x}}}\right)}}^{{2}}-{{x}}^{{2}}}}{{\sqrt{{{{x}}^{{2}}+{x}}}+\sqrt{{{x}}}}}=\frac{{{{x}}^{{2}}+{x}-{{x}}^{{2}}}}{{\sqrt{{{{x}}^{{2}}+{x}}}+{x}}}=

=xx2+x+x=\frac{{{x}}}{{\sqrt{{{{x}}^{{2}}+{x}}}+{x}}}.

Now, factor out x{x}: xx2+x+x=(xx(1+1x+1))=11+1x1\frac{{x}}{{\sqrt{{{{x}}^{{2}}+{x}}}+{x}}}={\left(\frac{{x}}{{{x}{\left(\sqrt{{{1}+\frac{{1}}{{x}}}}+{1}\right)}}}\right)}=\frac{{1}}{{\sqrt{{{1}+\frac{{1}}{{x}}}}-{1}}}.

Since 1<1+1x<1+1x{1}<\sqrt{{{1}+\frac{{1}}{{x}}}}<{1}+\frac{{1}}{{x}} for large x{x} and 1+1x1{1}+\frac{{1}}{{x}}\to{1} as x{x}\to\infty then by Squeeze Theorem 1+1x1\sqrt{{{1}+\frac{{1}}{{x}}}}\to{1}.

That's why limx(x2+xx)=limx(11+1x1)=11+1=12\lim_{{{x}\to\infty}}{\left(\sqrt{{{{x}}^{{2}}+{x}}}-{x}\right)}=\lim_{{{x}\to\infty}}{\left(\frac{{1}}{{\sqrt{{{1}+\frac{{1}}{{x}}}}-{1}}}\right)}=\frac{{1}}{{{1}+{1}}}=\frac{{1}}{{2}}.

Now, we will calculate limit that we will need later.

Example 9. Find limx0sin(x)x\lim_{{{x}\to{0}}}\frac{{{\sin{{\left({x}\right)}}}}}{{x}}.

As x0{x}\to{0} sin(x)0{\sin{{\left({x}\right)}}}\to{0}, so we have indeterminate form of type 00\frac{{0}}{{0}}.first significant limit

Before finding this limit we need to prove that for 0<x<π2{0}<{x}<\frac{\pi}{{2}} we have that sin(x)<x<tan(x){\sin{{\left({x}\right)}}}<{x}<{\tan{{\left({x}\right)}}}.

For this consider circle with radius r{r}, tangent AC{A}{C} to circle and central angle x{x}.

Clearly area of triangle AOB is less than area of sector AOB, and area of sector AOB is less than area of triangle AOC.

We have that area of sector AOB is x2ππr2=12r2x\frac{{{x}}}{{{2}\pi}}\cdot\pi{{r}}^{{2}}=\frac{{1}}{{2}}{{r}}^{{2}}{x}.

Since area of triangle AOB is 12r2sin(x)\frac{{1}}{{2}}{{r}}^{{2}}{\sin{{\left({x}\right)}}}, area of sector AOB is 12r2x\frac{{1}}{{2}}{{r}}^{{2}}{x} and area of triangle AOC is 12r2tan(x)\frac{{1}}{{2}}{{r}}^{{2}}{\tan{{\left({x}\right)}}} then 12r2sin(x)<12r2x<12r2tan(x)\frac{{1}}{{2}}{{r}}^{{2}}{\sin{{\left({x}\right)}}}<\frac{{1}}{{2}}{{r}}^{{2}}{x}<\frac{{1}}{{2}}{{r}}^{{2}}{\tan{{\left({x}\right)}}} or sin(x)<x<tan(x){\sin{{\left({x}\right)}}}<{x}<{\tan{{\left({x}\right)}}}.

Now, since 0<x<π2{0}<{x}<\frac{\pi}{{2}} then we can divide sin(x){\sin{{\left({x}\right)}}} by each member of inequality (don't forget to invert inequality signs): sin(x)sin(x)>sin(x)x>sin(x)tan(x)\frac{{{\sin{{\left({x}\right)}}}}}{{{\color{red}{{{\sin{{\left({x}\right)}}}}}}}}>\frac{{{\sin{{\left({x}\right)}}}}}{{{\color{red}{{{x}}}}}}>\frac{{{\sin{{\left({x}\right)}}}}}{{{\color{red}{{{\tan{{\left({x}\right)}}}}}}}} or 1>sin(x)x>cos(x){1}>\frac{{{\sin{{\left({x}\right)}}}}}{{x}}>{\cos{{\left({x}\right)}}}.

Thus, we obtained that cos(x)<sin(x)x<1{\cos{{\left({x}\right)}}}<\frac{{{\sin{{\left({x}\right)}}}}}{{x}}<{1}.

As x0{x}\to{0} cos(x)1{\cos{{\left({x}\right)}}}\to{1} that's why limx0cos(x)=1\lim_{{{x}\to{0}}}{\cos{{\left({x}\right)}}}={1}, so, by Squeeze Theorem limx0+sin(x)x=1\lim_{{{x}\to{{0}}^{+}}}\frac{{{\sin{{\left({x}\right)}}}}}{{x}}={1}. (we wrote one-sided limit because we considered interval (0,π2){\left({0},\frac{\pi}{{2}}\right)}). Since sin(x)x\frac{{{\sin{{\left({x}\right)}}}}}{{x}} is even function then also limx0sin(x)x=1\lim_{{{x}\to{{0}}^{{-}}}}\frac{{{\sin{{\left({x}\right)}}}}}{{x}}={1}. Since one-sided limits are equal then limx0sin(x)x=1\lim_{{{x}\to{0}}}\frac{{{\sin{{\left({x}\right)}}}}}{{x}}={1}.

From this limit we can find other limits.

Example 10. Find limx01cos(x)x2\lim_{{{x}\to{0}}}\frac{{{1}-{\cos{{\left({x}\right)}}}}}{{{x}}^{{2}}}.

Here we have indeterminate form of type 00\frac{{0}}{{0}}.

Since 1cos(x)=2sin2(x2){1}-{\cos{{\left({x}\right)}}}={2}{{\sin}}^{{2}}{\left(\frac{{x}}{{2}}\right)} then 1cos(x)x2=2sin2(x2)x2=12sin2(x2)x24=12(sin(x2)x2)2\frac{{{1}-{\cos{{\left({x}\right)}}}}}{{{x}}^{{2}}}=\frac{{{2}{{\sin}}^{{2}}{\left(\frac{{x}}{{2}}\right)}}}{{{x}}^{{2}}}=\frac{{1}}{{2}}\frac{{{{\sin}}^{{2}}{\left(\frac{{x}}{{2}}\right)}}}{{\frac{{{{x}}^{{2}}}}{{4}}}}=\frac{{1}}{{2}}{{\left(\frac{{{\sin{{\left(\frac{{x}}{{2}}\right)}}}}}{{\frac{{x}}{{2}}}}\right)}}^{{2}}.

Since x0{x}\to{0} then x20\frac{{x}}{{2}}\to{0} and so limx0sin(x2)x2=1\lim_{{{x}\to{0}}}\frac{{{\sin{{\left(\frac{{x}}{{2}}\right)}}}}}{{\frac{{x}}{{2}}}}={1}.

Thus, limx01cos(x)x2=limx012(sin(x2)x2)2=12(limx0sin(x2)x2)2=1212=12\lim_{{{x}\to{0}}}\frac{{{1}-{\cos{{\left({x}\right)}}}}}{{{x}}^{{2}}}=\lim_{{{x}\to{0}}}\frac{{1}}{{2}}{{\left(\frac{{{\sin{{\left(\frac{{x}}{{2}}\right)}}}}}{{\frac{{x}}{{2}}}}\right)}}^{{2}}=\frac{{1}}{{2}}{{\left(\lim_{{{x}\to{0}}}\frac{{{\sin{{\left(\frac{{x}}{{2}}\right)}}}}}{{\frac{{x}}{{2}}}}\right)}}^{{2}}=\frac{{1}}{{2}}\cdot{{1}}^{{2}}=\frac{{1}}{{2}}.

When we talked about the number ee, we proved that the sequence xn=(1+1n)n{x}_{{n}}={{\left({1}+\frac{{1}}{{n}}\right)}}^{{n}} has limit ee.

We have same thing for functions and formulate it as following fact:

Fact. limx(1+1x)x=e\lim_{{{x}\to\infty}}{{\left({1}+\frac{{1}}{{x}}\right)}}^{{x}}={e}, limx(1+1x)x=e\lim_{{{x}\to-\infty}}{{\left({1}+\frac{{1}}{{x}}\right)}}^{{x}}={e}.

If we make substitution t=1x{t}=\frac{{1}}{{x}} then t0{t}\to{0} as x{x}\to\infty. Thus, limt0(1+t)1t=e\lim_{{{t}\to{0}}}{{\left({1}+{t}\right)}}^{{\frac{{1}}{{t}}}}={e}.

Example 11. Prove that limh0ah1h=ln(a)\lim_{{{h}\to{0}}}\frac{{{{a}}^{{h}}-{1}}}{{h}}={\ln{{\left({a}\right)}}}.

Let ah1=x{{a}}^{{h}}-{1}={x} then x0{x}\to{0} as h0{h}\to{0}. And h=loga(x+1)=ln(x+1)ln(a){h}={\log}_{{a}}{\left({x}+{1}\right)}=\frac{{\ln{{\left({x}+{1}\right)}}}}{{\ln{{\left({a}\right)}}}}

So, limh0ah1h=limx0xln(x+1)ln(a)=ln(a)limx0xln(x+1)=ln(a)limx011xln(x+1)=\lim_{{{h}\to{0}}}\frac{{{{a}}^{{h}}-{1}}}{{h}}=\lim_{{{x}\to{0}}}\frac{{x}}{{\frac{{{\ln{{\left({x}+{1}\right)}}}}}{{{\ln{{\left({a}\right)}}}}}}}={\ln{{\left({a}\right)}}}\lim_{{{x}\to{0}}}\frac{{x}}{{{\ln{{\left({x}+{1}\right)}}}}}={\ln{{\left({a}\right)}}}\lim_{{{x}\to{0}}}\frac{{1}}{{\frac{{1}}{{x}}{\ln{{\left({x}+{1}\right)}}}}}=

=ln(a)limx01ln(1+x)1x=ln(a)1ln(limx0(1+x)1x)=ln(a)1ln(e)=ln(a)11=ln(a)={\ln{{\left({a}\right)}}}\lim_{{{x}\to{0}}}\frac{{1}}{{{{\ln{{\left({1}+{x}\right)}}}}^{{\frac{{1}}{{x}}}}}}={\ln{{\left({a}\right)}}}\frac{{1}}{{{\ln{{\left(\lim_{{{x}\to{0}}}{{\left({1}+{x}\right)}}^{{\frac{{1}}{{x}}}}\right)}}}}}={\ln{{\left({a}\right)}}}\frac{{1}}{{{\ln{{\left({e}\right)}}}}}={\ln{{\left({a}\right)}}}\frac{{1}}{{1}}={\ln{{\left({a}\right)}}}

Now, suppose that limxaf(x)=L\lim_{{{x}\to{a}}}{f{{\left({x}\right)}}}={L} and limxag(x)=M\lim_{{{x}\to{a}}}{g{{\left({x}\right)}}}={M}. We want to find limxaf(x)g(x)\lim_{{{x}\to{a}}}{{f{{\left({x}\right)}}}}^{{{g{{\left({x}\right)}}}}}.

To handle it we use continuity of the natural logarithm: let limxaf(x)g(x)=B\lim_{{{x}\to{a}}}{{f{{\left({x}\right)}}}}^{{{g{{\left({x}\right)}}}}}={B} then ln(limxaf(x)g(x))=ln(B){\ln{{\left(\lim_{{{x}\to{a}}}{{f{{\left({x}\right)}}}}^{{{g{{\left({x}\right)}}}}}\right)}}}={\ln{{\left({B}\right)}}}.

This can be rewritten as limxaln(f(x)g(x))=ln(B)\lim_{{{x}\to{a}}}{\ln{{\left({{f{{\left({x}\right)}}}}^{{{g{{\left({x}\right)}}}}}\right)}}}={\ln{{\left({B}\right)}}} or limxa(g(x)ln(f(x)))=ln(B)\lim_{{{x}\to{a}}}{\left({g{{\left({x}\right)}}}{\ln{{\left({f{{\left({x}\right)}}}\right)}}}\right)}={\ln{{\left({B}\right)}}}.

Again using continuity of the function we can write that limxag(x)ln(limxaf(x))=ln(B)\lim_{{{x}\to{a}}}{g{{\left({x}\right)}}}\cdot{\ln{{\left(\lim_{{{x}\to{a}}}{f{{\left({x}\right)}}}\right)}}}={\ln{{\left({B}\right)}}}.

So, ln(B)=Mln(L){\ln{{\left({B}\right)}}}={M}{\ln{{\left({L}\right)}}} or B=LM{B}={{L}}^{{M}}.

We can always find this limit except three indeterminate cases:

  1. L=1{L}={1}, M=±{M}=\pm\infty. In this case Mln(L){M}{\ln{{\left({L}\right)}}} is indeterminate form of type 0\infty\cdot{0}.
  2. L=0{L}={0}, M=0{M}={0}. In this case Mln(L){M}{\ln{{\left({L}\right)}}} is indeterminate form of type 0{0}\cdot\infty.
  3. L=+{L}=+\infty, M=0{M}={0}. In this case Mln(L){M}{\ln{{\left({L}\right)}}} is indeterminate form of type 0{0}\cdot\infty.

Example 12. Find limx0xx\lim_{{{x}\to{0}}}{{x}}^{{x}}.

Since limx0x=0\lim_{{{x}\to{0}}}{x}={0} then we have case b) here.

Let B=xx{B}={{x}}^{{x}} then ln(B)=ln(xx)=xln(x){\ln{{\left({B}\right)}}}={\ln{{\left({{x}}^{{x}}\right)}}}={x}{\ln{{\left({x}\right)}}}.

It is known that limx0xln(x)=0\lim_{{{x}\to{0}}}{x}{\ln{{\left({x}\right)}}}={0} that's why ln(B)=0{\ln{{\left({B}\right)}}}={0} or B=1{B}={1}.

Thus, limx0xx=1\lim_{{{x}\to{0}}}{{x}}^{{x}}={1}.