Limits Involving Infinity

Now it is time to talk about the limits that involve the special symbol \infty.

First, we are going to talk about infinite limits.

Definition. We write that limxaf(x)=\lim_{{{x}\to{a}}}{f{{\left({x}\right)}}}=\infty (limxaf(x)=)\left(\lim_{{{x}\to{a}}}{f{{\left({x}\right)}}}=-\infty\right) if for any E>0{E}>{0} there exists δ>0\delta>{0} such that f(x)>E (f(x)<E){f{{\left({x}\right)}}}>{E}\ {\left({f{{\left({x}\right)}}}<-{E}\right)} when xa<δ{\left|{x}-{a}\right|}<\delta.

This definition says that limxaf(x)=\lim_{{{x}\to{a}}}{f{{\left({x}\right)}}}=\infty means the following: when x{x} approaches a{a}, f(x){f{{\left({x}\right)}}} increases (decreases) without a bound and can take a very large number.

Once again, the symbol \infty is just used to denote a very large number. We can't perform arithmetic operations on such numbers.

Note: we assume that limxaf(x)=\lim_{{{x}\to{a}}}{f{{\left({x}\right)}}}=\infty exists, i.e. f(x){f{{\left({x}\right)}}} approaches a very large number (infinity) denoted by \infty. Unlike it, limx0sin(1x)\lim_{{{x}\to{0}}}{\sin{{\left(\frac{{1}}{{x}}\right)}}} doesn't exist, because the function doesn't approach any value.

So, we use the symbol \infty to denote the fact that the function approaches a very large number, not the fact that the limit doesn't exist, i.e. the function doesn't approach any number.

Example 1. Find limx01x2\lim_{{{x}\to{0}}}\frac{{1}}{{{x}}^{{2}}}.infinite limits

When x{x} approaches 00, x2{{x}}^{{2}} also approaches 00; so, 1x2\frac{{1}}{{{x}}^{{2}}} approaches a very large value (for example, 1(0.001)2=1000000\frac{{1}}{{{\left({0.001}\right)}}^{{2}}}={1000000}). Thus, limx0=1x2\lim_{{{x}\to{0}}}=\frac{{1}}{{{x}}^{{2}}}.

Also, it can be seen easily that limx01x2=\lim_{{{x}\to{0}}}-\frac{{1}}{{{x}}^{{2}}}=-\infty.

Similarly, we can define infinite one-sided limits: limxaf(x)=\lim_{{{x}\to{{a}}^{{-}}}}{f{{\left({x}\right)}}}=\infty, limxa+f(x)=\lim_{{{x}\to{{a}}^{+}}}{f{{\left({x}\right)}}}=\infty, limxaf(x)=\lim_{{{x}\to{{a}}^{{-}}}}{f{{\left({x}\right)}}}=-\infty, limxa+f(x)=\lim_{{{x}\to{{a}}^{+}}}{f{{\left({x}\right)}}}=-\infty.

Example 2. Find limx11x1\lim_{{{x}\to{1}}}\frac{{1}}{{{x}-{1}}}.infinite one sided limits

When we approach 11 from the left, x1{x}-{1} is a small positive number and 1x1\frac{{1}}{{{x}-{1}}} is a large negative number. Therefore, limx11x1=\lim_{{{x}\to{{1}}^{{-}}}}\frac{{1}}{{{x}-{1}}}=-\infty.

When we approach 11 from the right, x1{x}-{1} is a small positive number and 1x1\frac{{1}}{{{x}-{1}}} is a large positive number. Therefore, limx1+1x1=\lim_{{{x}\to{{1}}^{+}}}\frac{{1}}{{{x}-{1}}}=\infty.

Since limx11x1limx1+1x1\lim_{{{x}\to{{1}}^{{-}}}}\frac{{1}}{{{x}-{1}}}\ne\lim_{{{x}\to{{1}}^{+}}}\frac{{1}}{{{x}-{1}}}, we can say that limx11x1\lim_{{{x}\to{1}}}\frac{{1}}{{{x}-{1}}} doesn't exist.

Limits at Infinity

Above, we let x{x} approach some number, and the result was that the values of f(x){f{{\left({x}\right)}}} became arbitrarily large (positive or negative).

Now, we let x{x} become arbitrarily large (positive or negative) and see what happens to f(x){f{{\left({x}\right)}}}.

Example 3. Find limx3x21x2+1\lim_{{{x}\to\infty}}\frac{{{3}{{x}}^{{2}}-{1}}}{{{{x}}^{{2}}+{1}}} by guessing.limits at infinity

If x=100{x}={100}, we have that f(100)=3100211002+12.9996{f{{\left({100}\right)}}}=\frac{{{3}\cdot{{100}}^{{2}}-{1}}}{{{{100}}^{{2}}+{1}}}\approx{2.9996}, and if x=1000{x}={1000}, it can be said that f(1000)=310002110002+12.999996{f{{\left({1000}\right)}}}=\frac{{{3}\cdot{{1000}}^{{2}}-{1}}}{{{{1000}}^{{2}}+{1}}}\approx{2.999996}.

As x{x} grows larger and larger, the values of f(x){f{{\left({x}\right)}}} become closer and closer to 33.

We can make f(x){f{{\left({x}\right)}}} as close to 33 as we like by choosing a suffciently large x{x}.

Thus, limx3x21x2+1=3\lim_{{{x}\to\infty}}\frac{{{3}{{x}}^{{2}}-{1}}}{{{{x}}^{{2}}+{1}}}={3}.

Similarly, we can show that limx3x21x2+1=3\lim_{{{x}\to-\infty}}\frac{{{3}{{x}}^{{2}}-{1}}}{{{{x}}^{{2}}+{1}}}={3}.

Definition. We say that limxf(x)=L (limxf(x)=L)\lim_{{{x}\to\infty}}{f{{\left({x}\right)}}}={L}\ {\left(\lim_{{{x}\to-\infty}}{f{{\left({x}\right)}}}={L}\right)} if for every number ϵ>0\epsilon>{0} there exists a number M>0{M}>{0} such that f(x)L<ϵ{\left|{f{{\left({x}\right)}}}-{L}\right|}<\epsilon when x>M (x<M){x}>{M}\ {\left({x}<-{M}\right)}.

This means that we can make f(x){f{{\left({x}\right)}}} as close as we like to L{L} by taking a sufficiently large x{x} (positive or negative).

Example 4. Find limx1x1\lim_{{{x}\to\infty}}\frac{{1}}{{{x}-{1}}} and limx1x1\lim_{{{x}\to-\infty}}\frac{{1}}{{{x}-{1}}}.

Observe that when x{x} is large, 1x1\frac{{1}}{{{x}-{1}}} is small. Therefore, we can make 1x1\frac{{1}}{{{x}-{1}}} as close to 00 as we like by taking a sufficiently large x{x} (positive or negative). Therefore, limx1x1=limx1x1=0\lim_{{{x}\to\infty}}\frac{{1}}{{{x}-{1}}}=\lim_{{{x}\to-\infty}}\frac{{1}}{{{x}-{1}}}={0}. You can see the graph of the function in example 2.

Let's run through another quick example.

Example 5. Evaluate limx0e1x\lim_{{{x}\to{{0}}^{{-}}}}{{e}}^{{\frac{{1}}{{x}}}}.

Let t=1x{t}=\frac{{1}}{{x}}; then, t{t}\to-\infty as x0{x}\to{{0}}^{{-{}}}. Therefore, limx0e1x=limtet=0\lim_{{{x}\to{{0}}^{{-}}}}{{e}}^{{\frac{{1}}{{x}}}}=\lim_{{{t}\to-\infty}}{{e}}^{{t}}={0}.

Again, note that \infty is not a number, it is just a way to show that some value increases (or decreases) without a bound.

Let's do another example.

Example 6. Find limxcos(x)\lim_{{{x}\to\infty}}{\cos{{\left({x}\right)}}}.

As x{x} increases, the value of cos(x){\cos{{\left({x}\right)}}} oscillates infinitely many times between 1-1 and 11. Thus, limxcos(x)\lim_{{{x}\to\infty}}{\cos{{\left({x}\right)}}} doesn't exist.

Infinite Limits at Infinity

The notation limxf(x)=\lim_{{{x}\to\infty}}{f{{\left({x}\right)}}}=\infty means that f(x){f{{\left({x}\right)}}} becomes large as x{x} becomes large. The following notations have a similar meaning: limxf(x)=\lim_{{{x}\to-\infty}}{f{{\left({x}\right)}}}=\infty, limxf(x)=\lim_{{{x}\to\infty}}{f{{\left({x}\right)}}}=-\infty, limxf(x)=\lim_{{{x}\to-\infty}}{f{{\left({x}\right)}}}=-\infty.

For example, limxex=\lim_{{{x}\to\infty}}{{e}}^{{x}}=\infty, limxx2=\lim_{{{x}\to-\infty}}{{x}}^{{2}}=\infty, limxex=\lim_{{{x}\to\infty}}-{{e}}^{{x}}=-\infty, and limxx3=\lim_{{{x}\to-\infty}}{{x}}^{{3}}=-\infty.

Most of the properties of the limits hold for infinite limits. Now, let's formulate a couple of laws involving infinity.

Properties of Infinite Limits

Suppose that a{a} is a number (it can be infinity) and L{L} is a finite number.

Law 1. If limxaf(x)=L\lim_{{{x}\to{a}}}{f{{\left({x}\right)}}}={L} and limxag(x)=\lim_{{{x}\to{a}}}{g{{\left({x}\right)}}}=\infty, then limxa(f(x)+g(x))=\lim_{{{x}\to{a}}}{\left({f{{\left({x}\right)}}}+{g{{\left({x}\right)}}}\right)}=\infty.

Law 2. If limxaf(x)=L\lim_{{{x}\to{a}}}{f{{\left({x}\right)}}}={L} and limxag(x)=\lim_{{{x}\to{a}}}{g{{\left({x}\right)}}}=\infty, then limxa(f(x)g(x))=\lim_{{{x}\to{a}}}{\left({f{{\left({x}\right)}}}-{g{{\left({x}\right)}}}\right)}=-\infty.

Law 3. If limxaf(x)=L0\lim_{{{x}\to{a}}}{f{{\left({x}\right)}}}={L}\ne{0} and limxag(x)=\lim_{{{x}\to{a}}}{g{{\left({x}\right)}}}=\infty, then limxa(f(x)g(x))=\lim_{{{x}\to{a}}}{\left({f{{\left({x}\right)}}}{g{{\left({x}\right)}}}\right)}=\infty if L>0{L}>{0} and -\infty if L<0.{L}<{0}.

Law 4. If limxaf(x)=L\lim_{{{x}\to{a}}}{f{{\left({x}\right)}}}={L} and limxag(x)=±\lim_{{{x}\to{a}}}{g{{\left({x}\right)}}}=\pm\infty, then limxa(f(x)g(x))=0\lim_{{{x}\to{a}}}{\left(\frac{{f{{\left({x}\right)}}}}{{g{{\left({x}\right)}}}}\right)}={0}.

Law 5. If limxaf(x)=L\lim_{{{x}\to{a}}}{f{{\left({x}\right)}}}={L} and limxag(x)=\lim_{{{x}\to{a}}}{g{{\left({x}\right)}}}=\infty, then limxa(g(x)f(x))=\lim_{{{x}\to{a}}}{\left(\frac{{{g{{\left({x}\right)}}}}}{{{f{{\left({x}\right)}}}}}\right)}=\infty if L>0{L}>{0} and -\infty if L<0{L}<{0}.

Law 6. If limxaf(x)=\lim_{{{x}\to{a}}}{f{{\left({x}\right)}}}=\infty and limxag(x)=\lim_{{{x}\to{a}}}{g{{\left({x}\right)}}}=\infty, then limxa(f(x)+g(x))=\lim_{{{x}\to{a}}}{\left({f{{\left({x}\right)}}}+{g{{\left({x}\right)}}}\right)}=\infty.

Law 7. If limxaf(x)=\lim_{{{x}\to{a}}}{f{{\left({x}\right)}}}=\infty and limxag(x)=\lim_{{{x}\to{a}}}{g{{\left({x}\right)}}}=-\infty, then limxa(f(x)g(x))=\lim_{{{x}\to{a}}}{\left({f{{\left({x}\right)}}}-{g{{\left({x}\right)}}}\right)}=\infty.

Law 8. If limxaf(x)=L0\lim_{{{x}\to{a}}}{f{{\left({x}\right)}}}={L}\ne{0} and limxag(x)=0\lim_{{{x}\to{a}}}{g{{\left({x}\right)}}}={0}, then limxa(f(x)g(x))=\lim_{{{x}\to{a}}}{\left(\frac{{f{{\left({x}\right)}}}}{{g{{\left({x}\right)}}}}\right)}=\infty if L>0{L}>{0} and -\infty if L<0{L}<{0}.

Law 9. If limxaf(x)=L0\lim_{{{x}\to{a}}}{f{{\left({x}\right)}}}={L}\ne{0} and limxag(x)=0\lim_{{{x}\to{a}}}{g{{\left({x}\right)}}}={0}, then limxa(g(x)f(x))=0\lim_{{{x}\to{a}}}{\left(\frac{{g{{\left({x}\right)}}}}{{f{{\left({x}\right)}}}}\right)}={0}.

Law 10. If limxaf(x)=\lim_{{{x}\to{a}}}{f{{\left({x}\right)}}}=\infty, then limxacf(x)=\lim_{{{x}\to{a}}}{c}{f{{\left({x}\right)}}}=\infty, where c0{c}\ne{0} is some constant.

Note that these properties also hold for one-sided limits.

It is easy to believe that these properties are true.

Indeed, although we can't perform arithmetic operations over infinite values, it is clear that the sum of large numbers is a large number again (Law 1); the product of large numbers is again a large number (Law 3); if we divide a large number by a very small number, we will obtain again a large number (Law 4), etc.

Example 7. Find limx2+1xx2\lim_{{{x}\to{2^+}}}\frac{{{1}-{x}}}{{{x}-{2}}}.

Since limx2+(1x)=1\lim_{{{x}\to{2^+}}}{\left({1}-{x}\right)}=-{1} and limx2+(x2)=0\lim_{{{x}\to{2^+}}}{\left({x}-{2}\right)}={0}, according to Law 8, limx2+1xx2=\lim_{{{x}\to{2^+}}}\frac{{{1}-{x}}}{{{x}-{2}}}=-\infty.

And the final example.

Example 8. Find limx11xx\lim_{{{x}\to\infty}}\frac{{{1}-\frac{{1}}{{x}}}}{{{x}}}.

Since limx(11x)=1\lim_{{{x}\to\infty}}{\left({1}-\frac{{1}}{{x}}\right)}={1} and limxx=\lim_{{{x}\to\infty}}{x}=\infty, according to Law 4, limx11xx=0\lim_{{{x}\to\infty}}\frac{{{1}-\frac{{1}}{{x}}}}{{x}}={0}.