Properties of the Limits

Now it is time to give the properties of the limits that will allow to calculate the limits easier.

Suppose that cc is a constant and the limits limxaf(x)\lim_{{{x}\to{a}}}{f{{\left({x}\right)}}} and limxag(x)\lim_{{{x}\to{a}}}{g{{\left({x}\right)}}} exist; then, the following laws hold:

Law 1. limxac=c\lim_{{{x}\to{a}}}{c}={c}.

Law 2. limxa(f(x)±g(x))=limxaf(x)±limxag(x)\lim_{{{x}\to{a}}}{\left({f{{\left({x}\right)}}}\pm{g{{\left({x}\right)}}}\right)}=\lim_{{{x}\to{a}}}{f{{\left({x}\right)}}}\pm\lim_{{{x}\to{a}}}{g{{\left({x}\right)}}}. This is true for any number of functions.

Law 3. limxa(cf(x))=climxaf(x)\lim_{{{x}\to{a}}}{\left({c}{f{{\left({x}\right)}}}\right)}={c}\lim_{{{x}\to{a}}}{f{{\left({x}\right)}}}.

Law 4. limxa(f(x)g(x))=limxaf(x)limxag(x)\lim_{{{x}\to{a}}}{\left({f{{\left({x}\right)}}}{g{{\left({x}\right)}}}\right)}=\lim_{{{x}\to{a}}}{f{{\left({x}\right)}}}\cdot\lim_{{{x}\to{a}}}{g{{\left({x}\right)}}}.

Law 5. limxa(f(x)g(x))=limxaf(x)limxag(x)\lim_{{{x}\to{a}}}{\left(\frac{{f{{\left({x}\right)}}}}{{g{{\left({x}\right)}}}}\right)}=\frac{{\lim_{{{x}\to{a}}}{f{{\left({x}\right)}}}}}{{\lim_{{{x}\to{a}}}{g{{\left({x}\right)}}}}} provided that limxag(x)0\lim_{{{x}\to{a}}}{g{{\left({x}\right)}}}\ne{0}.

Law 6. limxa(f(x))n=(limxaf(x))n\lim_{{{x}\to{a}}}{{\left({f{{\left({x}\right)}}}\right)}}^{{n}}={{\left(\lim_{{{x}\to{a}}}{f{{\left({x}\right)}}}\right)}}^{{n}}, where n{n} is a real number.

Law 7. limxaf(x)n=limxaf(x)n\lim_{{{x}\to{a}}}{\sqrt[{{n}}]{{{f{{\left({x}\right)}}}}}}={\sqrt[{{n}}]{{\lim_{{{x}\to{a}}}{f{{\left({x}\right)}}}}}}.

Law 8. limxax=a\lim_{{{x}\to{a}}}{x}={a}.

Law 9. limxaxn=an\lim_{{{x}\to{a}}}{{x}}^{{n}}={{a}}^{{n}}.

These laws are also true for one-sided limits.

Now, let's go through a couple of examples.

Example 1. Find limx2(x33x2+4x+1)\lim_{{{x}\to{2}}}{\left({{x}}^{{3}}-{3}{{x}}^{{2}}+{4}{x}+{1}\right)}.

limx2(x33x2+4x+1)=limx2(x3)limx2(3x2)+limx2(4x)+limx2(1)=\lim_{{{x}\to{2}}}{\left({{x}}^{{3}}-{3}{{x}}^{{2}}+{4}{x}+{1}\right)}=\lim_{{{x}\to{2}}}{\left({{x}}^{{3}}\right)}-\lim_{{{x}\to{2}}}{\left({3}{{x}}^{{2}}\right)}+\lim_{{{x}\to{2}}}{\left({4}{x}\right)}+\lim_{{{x}\to{2}}}{\left({1}\right)}= according to law 2

=limx2(x3)3limx2(x2)+4limx2(x)+limx2(1)==\lim_{{{x}\to{2}}}{\left({{x}}^{{3}}\right)}-{3}\lim_{{{x}\to{2}}}{\left({{x}}^{{2}}\right)}+{4}\lim_{{{x}\to{2}}}{\left({x}\right)}+\lim_{{{x}\to{2}}}{\left({1}\right)}= according to law 3

=23322+42+1=5={{2}}^{{3}}-{3}\cdot{{2}}^{{2}}+{4}\cdot{2}+{1}={5}. according to laws 1, 6, and 8.

Let's do another example.

Example 2. Find limx1(x2+3x12x)\lim_{{{x}\to{1}}}{\left(\frac{{{{x}}^{{2}}+{3}{x}}}{{{1}-{2}{x}}}\right)}.

We need to use law 5, but first we need to make sure that limx1(12x)0\lim_{{{x}\to{1}}}{\left({1}-{2}{x}\right)}\ne{0}.

limx1(12x)=limx1(1)limx1(2x)=\lim_{{{x}\to{1}}}{\left({1}-{2}{x}\right)}=\lim_{{{x}\to{1}}}{\left({1}\right)}-\lim_{{{x}\to{1}}}{\left({2}{x}\right)}= according to law 2

=limx1(1)2limx1(x)=\lim_{{{x}\to{1}}}{\left({1}\right)}-{2}\lim_{{{x}\to{1}}}{\left({x}\right)} according to law 3

=121=10={1}-{2}\cdot{1}=-{1}\ne{0}. according to laws 1 and 8.

So, we can use law 5:

limx1(x2+3x12x)=limx1(x2+3x)limx1(12x)=limx1(x2+3x)1=(limx1(x2+3x))=\lim_{{{x}\to{1}}}{\left(\frac{{{{x}}^{{2}}+{3}{x}}}{{{1}-{2}{x}}}\right)}=\frac{{\lim_{{{x}\to{1}}}{\left({{x}}^{{2}}+{3}{x}\right)}}}{{\lim_{{{x}\to{1}}}{\left({1}-{2}{x}\right)}}}=\frac{{\lim_{{{x}\to{1}}}{\left({{x}}^{{2}}+{3}{x}\right)}}}{{-{1}}}=-{\left(\lim_{{{x}\to{1}}}{\left({{x}}^{{2}}+{3}{x}\right)}\right)}=

=(limx1(x2)+limx1(3x))==-{\left(\lim_{{{x}\to{1}}}{\left({{x}}^{{2}}\right)}+\lim_{{{x}\to{1}}}{\left({3}{x}\right)}\right)}= according to law 2

=(limx1(x2)+3limx1(x))==-{\left(\lim_{{{x}\to{1}}}{\left({{x}}^{{2}}\right)}+{3}\lim_{{{x}\to{1}}}{\left({x}\right)}\right)}= according to law 1

=(12+31)=4=-{\left({{1}}^{{2}}+{3}\cdot{1}\right)}=-{4}. according to laws 6 and 8.

Note that in the above examples we can just use direct substitution (in example 1, we could plug 22, and in example 2, we could put 11) to obtain the same correct answer.

In example 1, limx2(x33x2+4x+1)=23322+42+1=5\lim_{{{x}\to{2}}}{\left({{x}}^{{3}}-{3}{{x}}^{{2}}+{4}{x}+{1}\right)}={{2}}^{{3}}-{3}\cdot{{2}}^{{2}}+{4}\cdot{2}+{1}={5}, and in example 2, limx1(x2+3x12x)=12+31121=4\lim_{{{x}\to{1}}}{\left(\frac{{{{x}}^{{2}}+{3}{x}}}{{{1}-{2}{x}}}\right)}=\frac{{{{1}}^{{2}}+{3}\cdot{1}}}{{{1}-{2}\cdot{1}}}=-{4}.

Example 1 was to find the limit of a polynomial, and example 2 was to find the limit of a rational function. In fact, for these types of functions, we can always use direct substituion.

Direct Substitution Property. If f{f{}} is a polynomial or a rational function and a{a} is in the domain of f{f{}}, this means that limxaf(x)=f(a)\lim_{{{x}\to{a}}}{f{{\left({x}\right)}}}={f{{\left({a}\right)}}}.

Example 3. Find limx1x31x1\lim_{{{x}\to{1}}}\frac{{{{x}}^{{3}}-{1}}}{{{x}-{1}}}.

We can't use law 5 because limx1(x1)=0\lim_{{{x}\to{1}}}{\left({x}-{1}\right)}={0}; we can't use the direct subsitution property either because x=1{x}={1} is not in the domain.

However, we can use algebra to simplify the function. Note that x31=(x1)(x2+x+1){{x}}^{{3}}-{1}={\left({x}-{1}\right)}{\left({{x}}^{{2}}+{x}+{1}\right)}.

limx1(x31x1)=limx1((x1)(x2+x+1)x1)=\lim_{{{x}\to{1}}}{\left(\frac{{{{x}}^{{3}}-{1}}}{{{x}-{1}}}\right)}=\lim_{{{x}\to{1}}}{\left(\frac{{{\left({x}-{1}\right)}{\left({{x}}^{{2}}+{x}+{1}\right)}}}{{{x}-{1}}}\right)}=

On this step, we can cancel out the common term in the numerator and the denominator because x{x} approaches 11 but doesn't equal 11 (recall from the definition of the limit that we are interested in the behavior of the function near the point of approach), and thus x10{x}-{1}\ne{0}.

=limx1(x2+x+1)=12+1+1=3=\lim_{{{x}\to{1}}}{\left({{x}}^{{2}}+{x}+{1}\right)}={{1}}^{{2}}+{1}+{1}={3}.

Let's proceed to another example.

Example 4. Find limx0g(x)\lim_{{{x}\to{0}}}{g{{\left({x}\right)}}}, where g(x)={x2+3ifx00ifx=0{g{{\left({x}\right)}}}={\left\{\begin{array}{c}{{x}}^{{2}}+{3}{\quad\text{if}\quad}{x}\ne{0}\\{0}{\quad\text{if}\quad}{x}={0}\\ \end{array}\right.}.

Here, g{g{}} is defined at 00, and g(0)=0{g{{\left({0}\right)}}}={0}, but the limit doesn't depend on the value at the point 00. We investigate the behavior near 00, and near 00 the function is defined as x2+3{{x}}^{{2}}+{3}; thus, limx0g(x)=limx0(x2+3)=02+3=3\lim_{{{x}\to{0}}}{g{{\left({x}\right)}}}=\lim_{{{x}\to{0}}}{\left({{x}}^{{2}}+{3}\right)}={{0}}^{{2}}+{3}={3}.

This one was quick, so let's move on to the last example.

Example 5. Find limx0x2+42x2\lim_{{{x}\to{0}}}\frac{{\sqrt{{{{x}}^{{2}}+{4}}}-{2}}}{{{{x}}^{{2}}}}.

We can't apply the quotient law (law 5) because the limit of the denominator equals 00.

So, we need to perform some algebraic manipulations.

Let's rationalize the numerator:

limx0x2+42x2=limx0(x2+42x2 x2+4+2x2+4+2)=limx0(x2+4)22x2(x2+4+2)=\lim_{{{x}\to{0}}}\frac{{\sqrt{{{{x}}^{{2}}+{4}}}-{2}}}{{{{x}}^{{2}}}}=\lim_{{{x}\to{0}}}{\left(\frac{{\sqrt{{{{x}}^{{2}}+{4}}}-{2}}}{{{{x}}^{{2}}}}\ \frac{{\sqrt{{{{x}}^{{2}}+{4}}}+{2}}}{{\sqrt{{{{x}}^{{2}}+{4}}}+{2}}}\right)}=\lim_{{{x}\to{0}}}\frac{{{\left({{x}}^{{2}}+{4}\right)}-{{2}}^{{2}}}}{{{{x}}^{{2}}{\left(\sqrt{{{{x}}^{{2}}+{4}}}+{2}\right)}}}=

=limx0x2x2(x2+4+2)=limx0(1x2+4+2)=(1limx0(x2+4)+2)==\lim_{{{x}\to{0}}}\frac{{{{x}}^{{2}}}}{{{{x}}^{{2}}{\left(\sqrt{{{{x}}^{{2}}+{4}}}+{2}\right)}}}=\lim_{{{x}\to{0}}}{\left(\frac{{1}}{{\sqrt{{{{x}}^{{2}}+{4}}}+{2}}}\right)}={\left(\frac{{1}}{{\sqrt{{\lim_{{{x}\to{0}}}{\left({{x}}^{{2}}+{4}\right)}}}+{2}}}\right)}=

=102+4+2=14=\frac{{1}}{{\sqrt{{{{0}}^{{2}}+{4}}}+{2}}}=\frac{{1}}{{4}}.

So, we often need to do some algebraic manipulations before evaluating the limit.