Now it is time to give the properties of the limits that will allow to calculate the limits easier.
Suppose that c c c is a constant and the limits lim x → a f ( x ) \lim_{{{x}\to{a}}}{f{{\left({x}\right)}}} lim x → a f ( x ) and lim x → a g ( x ) \lim_{{{x}\to{a}}}{g{{\left({x}\right)}}} lim x → a g ( x ) exist; then, the following laws hold:
Law 1. lim x → a c = c \lim_{{{x}\to{a}}}{c}={c} lim x → a c = c .
Law 2. lim x → a ( f ( x ) ± g ( x ) ) = lim x → a f ( x ) ± lim x → a g ( x ) \lim_{{{x}\to{a}}}{\left({f{{\left({x}\right)}}}\pm{g{{\left({x}\right)}}}\right)}=\lim_{{{x}\to{a}}}{f{{\left({x}\right)}}}\pm\lim_{{{x}\to{a}}}{g{{\left({x}\right)}}} lim x → a ( f ( x ) ± g ( x ) ) = lim x → a f ( x ) ± lim x → a g ( x ) . This is true for any number of functions.
Law 3. lim x → a ( c f ( x ) ) = c lim x → a f ( x ) \lim_{{{x}\to{a}}}{\left({c}{f{{\left({x}\right)}}}\right)}={c}\lim_{{{x}\to{a}}}{f{{\left({x}\right)}}} lim x → a ( c f ( x ) ) = c lim x → a f ( x ) .
Law 4. lim x → a ( f ( x ) g ( x ) ) = lim x → a f ( x ) ⋅ lim x → a g ( x ) \lim_{{{x}\to{a}}}{\left({f{{\left({x}\right)}}}{g{{\left({x}\right)}}}\right)}=\lim_{{{x}\to{a}}}{f{{\left({x}\right)}}}\cdot\lim_{{{x}\to{a}}}{g{{\left({x}\right)}}} lim x → a ( f ( x ) g ( x ) ) = lim x → a f ( x ) ⋅ lim x → a g ( x ) .
Law 5. lim x → a ( f ( x ) g ( x ) ) = lim x → a f ( x ) lim x → a g ( x ) \lim_{{{x}\to{a}}}{\left(\frac{{f{{\left({x}\right)}}}}{{g{{\left({x}\right)}}}}\right)}=\frac{{\lim_{{{x}\to{a}}}{f{{\left({x}\right)}}}}}{{\lim_{{{x}\to{a}}}{g{{\left({x}\right)}}}}} lim x → a ( g ( x ) f ( x ) ) = l i m x → a g ( x ) l i m x → a f ( x ) provided that lim x → a g ( x ) ≠ 0 \lim_{{{x}\to{a}}}{g{{\left({x}\right)}}}\ne{0} lim x → a g ( x ) = 0 .
Law 6. lim x → a ( f ( x ) ) n = ( lim x → a f ( x ) ) n \lim_{{{x}\to{a}}}{{\left({f{{\left({x}\right)}}}\right)}}^{{n}}={{\left(\lim_{{{x}\to{a}}}{f{{\left({x}\right)}}}\right)}}^{{n}} lim x → a ( f ( x ) ) n = ( lim x → a f ( x ) ) n , where n {n} n is a real number.
Law 7. lim x → a f ( x ) n = lim x → a f ( x ) n \lim_{{{x}\to{a}}}{\sqrt[{{n}}]{{{f{{\left({x}\right)}}}}}}={\sqrt[{{n}}]{{\lim_{{{x}\to{a}}}{f{{\left({x}\right)}}}}}} lim x → a n f ( x ) = n lim x → a f ( x ) .
Law 8. lim x → a x = a \lim_{{{x}\to{a}}}{x}={a} lim x → a x = a .
Law 9. lim x → a x n = a n \lim_{{{x}\to{a}}}{{x}}^{{n}}={{a}}^{{n}} lim x → a x n = a n .
These laws are also true for one-sided limits .
Now, let's go through a couple of examples.
Example 1 . Find lim x → 2 ( x 3 − 3 x 2 + 4 x + 1 ) \lim_{{{x}\to{2}}}{\left({{x}}^{{3}}-{3}{{x}}^{{2}}+{4}{x}+{1}\right)} lim x → 2 ( x 3 − 3 x 2 + 4 x + 1 ) .
lim x → 2 ( x 3 − 3 x 2 + 4 x + 1 ) = lim x → 2 ( x 3 ) − lim x → 2 ( 3 x 2 ) + lim x → 2 ( 4 x ) + lim x → 2 ( 1 ) = \lim_{{{x}\to{2}}}{\left({{x}}^{{3}}-{3}{{x}}^{{2}}+{4}{x}+{1}\right)}=\lim_{{{x}\to{2}}}{\left({{x}}^{{3}}\right)}-\lim_{{{x}\to{2}}}{\left({3}{{x}}^{{2}}\right)}+\lim_{{{x}\to{2}}}{\left({4}{x}\right)}+\lim_{{{x}\to{2}}}{\left({1}\right)}= lim x → 2 ( x 3 − 3 x 2 + 4 x + 1 ) = lim x → 2 ( x 3 ) − lim x → 2 ( 3 x 2 ) + lim x → 2 ( 4 x ) + lim x → 2 ( 1 ) = according to law 2
= lim x → 2 ( x 3 ) − 3 lim x → 2 ( x 2 ) + 4 lim x → 2 ( x ) + lim x → 2 ( 1 ) = =\lim_{{{x}\to{2}}}{\left({{x}}^{{3}}\right)}-{3}\lim_{{{x}\to{2}}}{\left({{x}}^{{2}}\right)}+{4}\lim_{{{x}\to{2}}}{\left({x}\right)}+\lim_{{{x}\to{2}}}{\left({1}\right)}= = lim x → 2 ( x 3 ) − 3 lim x → 2 ( x 2 ) + 4 lim x → 2 ( x ) + lim x → 2 ( 1 ) = according to law 3
= 2 3 − 3 ⋅ 2 2 + 4 ⋅ 2 + 1 = 5 ={{2}}^{{3}}-{3}\cdot{{2}}^{{2}}+{4}\cdot{2}+{1}={5} = 2 3 − 3 ⋅ 2 2 + 4 ⋅ 2 + 1 = 5 . according to laws 1, 6, and 8.
Let's do another example.
Example 2 . Find lim x → 1 ( x 2 + 3 x 1 − 2 x ) \lim_{{{x}\to{1}}}{\left(\frac{{{{x}}^{{2}}+{3}{x}}}{{{1}-{2}{x}}}\right)} lim x → 1 ( 1 − 2 x x 2 + 3 x ) .
We need to use law 5, but first we need to make sure that lim x → 1 ( 1 − 2 x ) ≠ 0 \lim_{{{x}\to{1}}}{\left({1}-{2}{x}\right)}\ne{0} lim x → 1 ( 1 − 2 x ) = 0 .
lim x → 1 ( 1 − 2 x ) = lim x → 1 ( 1 ) − lim x → 1 ( 2 x ) = \lim_{{{x}\to{1}}}{\left({1}-{2}{x}\right)}=\lim_{{{x}\to{1}}}{\left({1}\right)}-\lim_{{{x}\to{1}}}{\left({2}{x}\right)}= lim x → 1 ( 1 − 2 x ) = lim x → 1 ( 1 ) − lim x → 1 ( 2 x ) = according to law 2
= lim x → 1 ( 1 ) − 2 lim x → 1 ( x ) =\lim_{{{x}\to{1}}}{\left({1}\right)}-{2}\lim_{{{x}\to{1}}}{\left({x}\right)} = lim x → 1 ( 1 ) − 2 lim x → 1 ( x ) according to law 3
= 1 − 2 ⋅ 1 = − 1 ≠ 0 ={1}-{2}\cdot{1}=-{1}\ne{0} = 1 − 2 ⋅ 1 = − 1 = 0 . according to laws 1 and 8.
So, we can use law 5:
lim x → 1 ( x 2 + 3 x 1 − 2 x ) = lim x → 1 ( x 2 + 3 x ) lim x → 1 ( 1 − 2 x ) = lim x → 1 ( x 2 + 3 x ) − 1 = − ( lim x → 1 ( x 2 + 3 x ) ) = \lim_{{{x}\to{1}}}{\left(\frac{{{{x}}^{{2}}+{3}{x}}}{{{1}-{2}{x}}}\right)}=\frac{{\lim_{{{x}\to{1}}}{\left({{x}}^{{2}}+{3}{x}\right)}}}{{\lim_{{{x}\to{1}}}{\left({1}-{2}{x}\right)}}}=\frac{{\lim_{{{x}\to{1}}}{\left({{x}}^{{2}}+{3}{x}\right)}}}{{-{1}}}=-{\left(\lim_{{{x}\to{1}}}{\left({{x}}^{{2}}+{3}{x}\right)}\right)}= lim x → 1 ( 1 − 2 x x 2 + 3 x ) = l i m x → 1 ( 1 − 2 x ) l i m x → 1 ( x 2 + 3 x ) = − 1 l i m x → 1 ( x 2 + 3 x ) = − ( lim x → 1 ( x 2 + 3 x ) ) =
= − ( lim x → 1 ( x 2 ) + lim x → 1 ( 3 x ) ) = =-{\left(\lim_{{{x}\to{1}}}{\left({{x}}^{{2}}\right)}+\lim_{{{x}\to{1}}}{\left({3}{x}\right)}\right)}= = − ( lim x → 1 ( x 2 ) + lim x → 1 ( 3 x ) ) = according to law 2
= − ( lim x → 1 ( x 2 ) + 3 lim x → 1 ( x ) ) = =-{\left(\lim_{{{x}\to{1}}}{\left({{x}}^{{2}}\right)}+{3}\lim_{{{x}\to{1}}}{\left({x}\right)}\right)}= = − ( lim x → 1 ( x 2 ) + 3 lim x → 1 ( x ) ) = according to law 1
= − ( 1 2 + 3 ⋅ 1 ) = − 4 =-{\left({{1}}^{{2}}+{3}\cdot{1}\right)}=-{4} = − ( 1 2 + 3 ⋅ 1 ) = − 4 . according to laws 6 and 8.
Note that in the above examples we can just use direct substitution (in example 1, we could plug 2 2 2 , and in example 2, we could put 1 1 1 ) to obtain the same correct answer.
In example 1, lim x → 2 ( x 3 − 3 x 2 + 4 x + 1 ) = 2 3 − 3 ⋅ 2 2 + 4 ⋅ 2 + 1 = 5 \lim_{{{x}\to{2}}}{\left({{x}}^{{3}}-{3}{{x}}^{{2}}+{4}{x}+{1}\right)}={{2}}^{{3}}-{3}\cdot{{2}}^{{2}}+{4}\cdot{2}+{1}={5} lim x → 2 ( x 3 − 3 x 2 + 4 x + 1 ) = 2 3 − 3 ⋅ 2 2 + 4 ⋅ 2 + 1 = 5 , and in example 2, lim x → 1 ( x 2 + 3 x 1 − 2 x ) = 1 2 + 3 ⋅ 1 1 − 2 ⋅ 1 = − 4 \lim_{{{x}\to{1}}}{\left(\frac{{{{x}}^{{2}}+{3}{x}}}{{{1}-{2}{x}}}\right)}=\frac{{{{1}}^{{2}}+{3}\cdot{1}}}{{{1}-{2}\cdot{1}}}=-{4} lim x → 1 ( 1 − 2 x x 2 + 3 x ) = 1 − 2 ⋅ 1 1 2 + 3 ⋅ 1 = − 4 .
Example 1 was to find the limit of a polynomial , and example 2 was to find the limit of a rational function . In fact, for these types of functions, we can always use direct substituion.
Direct Substitution Property. If f {f{}} f is a polynomial or a rational function and a {a} a is in the domain of f {f{}} f , this means that lim x → a f ( x ) = f ( a ) \lim_{{{x}\to{a}}}{f{{\left({x}\right)}}}={f{{\left({a}\right)}}} lim x → a f ( x ) = f ( a ) .
Example 3 . Find lim x → 1 x 3 − 1 x − 1 \lim_{{{x}\to{1}}}\frac{{{{x}}^{{3}}-{1}}}{{{x}-{1}}} lim x → 1 x − 1 x 3 − 1 .
We can't use law 5 because lim x → 1 ( x − 1 ) = 0 \lim_{{{x}\to{1}}}{\left({x}-{1}\right)}={0} lim x → 1 ( x − 1 ) = 0 ; we can't use the direct subsitution property either because x = 1 {x}={1} x = 1 is not in the domain.
However, we can use algebra to simplify the function. Note that x 3 − 1 = ( x − 1 ) ( x 2 + x + 1 ) {{x}}^{{3}}-{1}={\left({x}-{1}\right)}{\left({{x}}^{{2}}+{x}+{1}\right)} x 3 − 1 = ( x − 1 ) ( x 2 + x + 1 ) .
lim x → 1 ( x 3 − 1 x − 1 ) = lim x → 1 ( ( x − 1 ) ( x 2 + x + 1 ) x − 1 ) = \lim_{{{x}\to{1}}}{\left(\frac{{{{x}}^{{3}}-{1}}}{{{x}-{1}}}\right)}=\lim_{{{x}\to{1}}}{\left(\frac{{{\left({x}-{1}\right)}{\left({{x}}^{{2}}+{x}+{1}\right)}}}{{{x}-{1}}}\right)}= lim x → 1 ( x − 1 x 3 − 1 ) = lim x → 1 ( x − 1 ( x − 1 ) ( x 2 + x + 1 ) ) =
On this step, we can cancel out the common term in the numerator and the denominator because x {x} x approaches 1 1 1 but doesn't equal 1 1 1 (recall from the definition of the limit that we are interested in the behavior of the function near the point of approach), and thus x − 1 ≠ 0 {x}-{1}\ne{0} x − 1 = 0 .
= lim x → 1 ( x 2 + x + 1 ) = 1 2 + 1 + 1 = 3 =\lim_{{{x}\to{1}}}{\left({{x}}^{{2}}+{x}+{1}\right)}={{1}}^{{2}}+{1}+{1}={3} = lim x → 1 ( x 2 + x + 1 ) = 1 2 + 1 + 1 = 3 .
Let's proceed to another example.
Example 4 . Find lim x → 0 g ( x ) \lim_{{{x}\to{0}}}{g{{\left({x}\right)}}} lim x → 0 g ( x ) , where g ( x ) = { x 2 + 3 if x ≠ 0 0 if x = 0 {g{{\left({x}\right)}}}={\left\{\begin{array}{c}{{x}}^{{2}}+{3}{\quad\text{if}\quad}{x}\ne{0}\\{0}{\quad\text{if}\quad}{x}={0}\\ \end{array}\right.} g ( x ) = { x 2 + 3 if x = 0 0 if x = 0 .
Here, g {g{}} g is defined at 0 0 0 , and g ( 0 ) = 0 {g{{\left({0}\right)}}}={0} g ( 0 ) = 0 , but the limit doesn't depend on the value at the point 0 0 0 . We investigate the behavior near 0 0 0 , and near 0 0 0 the function is defined as x 2 + 3 {{x}}^{{2}}+{3} x 2 + 3 ; thus, lim x → 0 g ( x ) = lim x → 0 ( x 2 + 3 ) = 0 2 + 3 = 3 \lim_{{{x}\to{0}}}{g{{\left({x}\right)}}}=\lim_{{{x}\to{0}}}{\left({{x}}^{{2}}+{3}\right)}={{0}}^{{2}}+{3}={3} lim x → 0 g ( x ) = lim x → 0 ( x 2 + 3 ) = 0 2 + 3 = 3 .
This one was quick, so let's move on to the last example.
Example 5 . Find lim x → 0 x 2 + 4 − 2 x 2 \lim_{{{x}\to{0}}}\frac{{\sqrt{{{{x}}^{{2}}+{4}}}-{2}}}{{{{x}}^{{2}}}} lim x → 0 x 2 x 2 + 4 − 2 .
We can't apply the quotient law (law 5) because the limit of the denominator equals 0 0 0 .
So, we need to perform some algebraic manipulations.
Let's rationalize the numerator:
lim x → 0 x 2 + 4 − 2 x 2 = lim x → 0 ( x 2 + 4 − 2 x 2 x 2 + 4 + 2 x 2 + 4 + 2 ) = lim x → 0 ( x 2 + 4 ) − 2 2 x 2 ( x 2 + 4 + 2 ) = \lim_{{{x}\to{0}}}\frac{{\sqrt{{{{x}}^{{2}}+{4}}}-{2}}}{{{{x}}^{{2}}}}=\lim_{{{x}\to{0}}}{\left(\frac{{\sqrt{{{{x}}^{{2}}+{4}}}-{2}}}{{{{x}}^{{2}}}}\ \frac{{\sqrt{{{{x}}^{{2}}+{4}}}+{2}}}{{\sqrt{{{{x}}^{{2}}+{4}}}+{2}}}\right)}=\lim_{{{x}\to{0}}}\frac{{{\left({{x}}^{{2}}+{4}\right)}-{{2}}^{{2}}}}{{{{x}}^{{2}}{\left(\sqrt{{{{x}}^{{2}}+{4}}}+{2}\right)}}}= lim x → 0 x 2 x 2 + 4 − 2 = lim x → 0 ( x 2 x 2 + 4 − 2 x 2 + 4 + 2 x 2 + 4 + 2 ) = lim x → 0 x 2 ( x 2 + 4 + 2 ) ( x 2 + 4 ) − 2 2 =
= lim x → 0 x 2 x 2 ( x 2 + 4 + 2 ) = lim x → 0 ( 1 x 2 + 4 + 2 ) = ( 1 lim x → 0 ( x 2 + 4 ) + 2 ) = =\lim_{{{x}\to{0}}}\frac{{{{x}}^{{2}}}}{{{{x}}^{{2}}{\left(\sqrt{{{{x}}^{{2}}+{4}}}+{2}\right)}}}=\lim_{{{x}\to{0}}}{\left(\frac{{1}}{{\sqrt{{{{x}}^{{2}}+{4}}}+{2}}}\right)}={\left(\frac{{1}}{{\sqrt{{\lim_{{{x}\to{0}}}{\left({{x}}^{{2}}+{4}\right)}}}+{2}}}\right)}= = lim x → 0 x 2 ( x 2 + 4 + 2 ) x 2 = lim x → 0 ( x 2 + 4 + 2 1 ) = ( l i m x → 0 ( x 2 + 4 ) + 2 1 ) =
= 1 0 2 + 4 + 2 = 1 4 =\frac{{1}}{{\sqrt{{{{0}}^{{2}}+{4}}}+{2}}}=\frac{{1}}{{4}} = 0 2 + 4 + 2 1 = 4 1 .
So, we often need to do some algebraic manipulations before evaluating the limit.