Sandwich Theorem

Fact. If f(x)g(x){f{{\left({x}\right)}}}\le{g{{\left({x}\right)}}} when x{x} is near a{a} (except possibly at a{a}) then limxaf(x)limxag(x)\lim_{{{x}\to{a}}}{f{{\left({x}\right)}}}\le\lim_{{{x}\to{a}}}{g{{\left({x}\right)}}}.

This fact means that if values of f(x){f{{\left({x}\right)}}} are not larger than values of g(x){g{{\left({x}\right)}}} near a{a}, then f(x){f{{\left({x}\right)}}} approaches not larger limit than g(x){g{{\left({x}\right)}}} as xa{x}\to{a}.

Sandwich Theorem (or Squeeze Theorem). Consider three functions f(x),g(x),h(x){f{{\left({x}\right)}}},{g{{\left({x}\right)}}},{h}{\left({x}\right)}. If we have that f(x)g(x)h(x){f{{\left({x}\right)}}}\le{g{{\left({x}\right)}}}\le{h}{\left({x}\right)}, when x{x} near a{a} (except possibly at a{a}) and limxaf(x)=limxah(x)=L\lim_{{{x}\to{a}}}{f{{\left({x}\right)}}}=\lim_{{{x}\to{a}}}{h}{\left({x}\right)}={L} then limxag(x)=L\lim_{{{x}\to{a}}}{g{{\left({x}\right)}}}={L}.

This theorem tells us folowing: if there are three functions, two of which have same
limit as x{x} approaches a{a} and third is "squeezed" between them, then third will have to approach same limit as x{x} approaches a{a} as first two.

Example. Find limx0x2cos(1x)\lim_{{{x}\to{0}}}{{x}}^{{2}}{\cos{{\left(\frac{{1}}{{x}}\right)}}}.

squeeze theoremSince 1cos(1x)1-{1}\le{\cos{{\left(\frac{{1}}{{x}}\right)}}}\le{1} for all x{x} (actually we are interested only in x{x} near 0) then x2x2cos(1x)x2-{{x}}^{{2}}\le{{x}}^{{2}}{\cos{{\left(\frac{{1}}{{x}}\right)}}}\le{{x}}^{{2}}. Since limx0x2=limx0x2=0\lim_{{{x}\to{0}}}{{x}}^{{2}}=\lim_{{{x}\to{0}}}-{{x}}^{{2}}={0} then by Squeeze theorem limx0x2cos(1x)=0\lim_{{{x}\to{0}}}{{x}}^{{2}}{\cos{{\left(\frac{{1}}{{x}}\right)}}}={0}.

On the figure you can see that x2cos(1x){{x}}^{{2}}{\cos{{\left(\frac{{1}}{{x}}\right)}}} is squeezed between x2{{x}}^{{2}} and x2-{{x}}^{{2}}.