Proving Inequalities Using Monotony of the Function

Monotony of the function can be used to prove some not obvious inequalities.

Example 1. Prove that sin(x)>2πx{\sin{{\left({x}\right)}}}>\frac{{2}}{\pi}{x} when 0<x<π2{0}<{x}<\frac{\pi}{{2}}.

Consider function f(x)=sin(x)x{f{{\left({x}\right)}}}=\frac{{{\sin{{\left({x}\right)}}}}}{{x}} defined on interval (0,π2]{\left({0},\frac{\pi}{{2}}\right]}.

We have that f(x)=xcos(x)sin(x)x2=cos(x)(xtan(x))x2{f{'}}{\left({x}\right)}=\frac{{{x}{\cos{{\left({x}\right)}}}-{\sin{{\left({x}\right)}}}}}{{{x}}^{{2}}}=\frac{{{\cos{{\left({x}\right)}}}{\left({x}-{\tan{{\left({x}\right)}}}\right)}}}{{{x}}^{{2}}}. On interval (0,π2){\left({0},\frac{\pi}{{2}}\right)} cos(x)>0{\cos{{\left({x}\right)}}}>{0} and x<tan(x){x}<{\tan{{\left({x}\right)}}}, so f(x)<0{f{'}}{\left({x}\right)}<{0}. This means that function is decreasing on interval (0,π2){\left({0},\frac{\pi}{{2}}\right)}.

So, for any x{x} from (0,π2){\left({0},\frac{\pi}{{2}}\right)} we have that f(x)=sin(x)x>f(π2)=2π{f{{\left({x}\right)}}}=\frac{{{\sin{{\left({x}\right)}}}}}{{x}}>{f{{\left(\frac{\pi}{{2}}\right)}}}=\frac{{2}}{\pi} or equivalently sin(x)>2πx{\sin{{\left({x}\right)}}}>\frac{{2}}{\pi}{x}.

Example 2. Prove that cos(x)>112x2{\cos{{\left({x}\right)}}}>{1}-\frac{{1}}{{2}}{{x}}^{{2}} for x>0{x}>{0}.

Consider function f(x)=cos(x)1+12x2{f{{\left({x}\right)}}}={\cos{{\left({x}\right)}}}-{1}+\frac{{1}}{{2}}{{x}}^{{2}}. We have that f(0)=cos(0)1+1202=0{f{{\left({0}\right)}}}={\cos{{\left({0}\right)}}}-{1}+\frac{{1}}{{2}}{{0}}^{{2}}={0}.

derivative of function f(x)=sin(x)+x>0{f{'}}{\left({x}\right)}=-{\sin{{\left({x}\right)}}}+{x}>{0} because sin(x)<x{\sin{{\left({x}\right)}}}<{x}.

This means that for x0{x}\ge{0} function is increasing and for x>0{x}>{0} we have that f(x)>f(0)=0{f{{\left({x}\right)}}}>{f{{\left({0}\right)}}}={0}, i.e. cos(x)1+12x2>0{\cos{{\left({x}\right)}}}-{1}+\frac{{1}}{{2}}{{x}}^{{2}}>{0}. This is equivalent to cos(x)>112x2{\cos{{\left({x}\right)}}}>{1}-\frac{{1}}{{2}}{{x}}^{{2}}.

Example 3. Prove that ln(x)x1{\ln{{\left({x}\right)}}}\le{x}-{1} for x>0{x}>{0}.

Consider function f(x)=ln(x)x{f{{\left({x}\right)}}}={\ln{{\left({x}\right)}}}-{x}. Its derivative is f(x)=1x1{f{'}}{\left({x}\right)}=\frac{{1}}{{x}}-{1}. Clearly f(x)>0{f{'}}{\left({x}\right)}>{0} when 0<x<1{0}<{x}<{1} and f(x)<0{f{'}}{\left({x}\right)}<{0} when x>1{x}>{1}.

So, function is increasing on interval (0,1){\left({0},{1}\right)} and decreasing on interval (1,){\left({1},\infty\right)}. So, at point x=1{x}={1} it takes its largest value f(1)=ln(1)1=1{f{{\left({1}\right)}}}={\ln{{\left({1}\right)}}}-{1}=-{1}.

That's why ln(x)x1{\ln{{\left({x}\right)}}}-{x}\le-{1} for x>0{x}>{0}. This is equivalent to ln(x)x1{\ln{{\left({x}\right)}}}\le{x}-{1} for x>0{x}>{0}.