Maclaurin Polynomials of Common Functions

When a=0a=0 we call Taylor polynomial Maclaurin polynomial. In this case formulas for polynomials are fairly simple.

Maclaurin Polynomial. For function y=f(x)y={f{{\left({x}\right)}}} Maclaurin polynomial of n-th degree is Mn(x)=f(0)+f(0)1!x+f(0)2!x2++f(n)(0)n!xn{M}_{{n}}{\left({x}\right)}={f{{\left({0}\right)}}}+\frac{{{f{'}}{\left({0}\right)}}}{{{1}!}}{x}+\frac{{{f{''}}{\left({0}\right)}}}{{{2}!}}{{x}}^{{2}}+\ldots+\frac{{{{f}}^{{{\left({n}\right)}}}{\left({0}\right)}}}{{{n}!}}{{x}}^{{n}}.

Now let's calculate Maclaurin polynomial of common functions.

Fact. For polynomial function Maclaurin polynomial is polynomial itself.

For function f(x)=ex{f{{\left({x}\right)}}}={{e}}^{{x}} all higher-order derivatives equals ex{{e}}^{{x}} and values of its derivatives at point 0 are 1.

So, ex1+x1!+x22!++xnn!{\color{blue}{{{{e}}^{{x}}\approx{1}+\frac{{x}}{{{1}!}}+\frac{{{{x}}^{{2}}}}{{{2}!}}+\ldots+\frac{{{{x}}^{{n}}}}{{{n}!}}}}}.

For function f(x)=sin(x){f{{\left({x}\right)}}}={\sin{{\left({x}\right)}}}, f(x)=cos(x){f{'}}{\left({x}\right)}={\cos{{\left({x}\right)}}}, f(x)=sin(x){f{''}}{\left({x}\right)}=-{\sin{{\left({x}\right)}}}, f(x)=cos(x){f{'''}}{\left({x}\right)}=-{\cos{{\left({x}\right)}}}, f(4)(x)=sin(x){{f}}^{{{\left({4}\right)}}}{\left({x}\right)}={\sin{{\left({x}\right)}}}.

This means that coeffcient near even degrees will equal 0, and other coeffcients will alternate sign.

So, sin(x)xx33!+x55!x77!++(1)m1x2m1(2m1)!{\color{red}{{{\sin{{\left({x}\right)}}}\approx{x}-\frac{{{{x}}^{{3}}}}{{{3}!}}+\frac{{{{x}}^{{5}}}}{{{5}!}}-\frac{{{{x}}^{{7}}}}{{{7}!}}+\ldots+{{\left(-{1}\right)}}^{{{m}-{1}}}\frac{{{{x}}^{{{2}{m}-{1}}}}}{{{\left({2}{m}-{1}\right)}!}}}}}, where n=2m{n}={2}{m}.

Similarly, cos(x)1x22!+x44!x66!++(1)mx2m(2m)!{\color{green}{{{\cos{{\left({x}\right)}}}\approx{1}-\frac{{{{x}}^{{2}}}}{{{2}!}}+\frac{{{{x}}^{{4}}}}{{{4}!}}-\frac{{{{x}}^{{6}}}}{{{6}!}}+\ldots+{{\left(-{1}\right)}}^{{m}}\frac{{{{x}}^{{{2}{m}}}}}{{{\left({2}{m}\right)}!}}}}}, where n=2m+1{n}={2}{m}+{1}.

Now consider function f(x)=xm{f{{\left({x}\right)}}}={{x}}^{{m}} where m0{m}\ne{0} is non-natural number. In this case either function itself (when m<0{m}<{0}) or its derivatives (when n>m{n}>{m}) grows without a bound. Therefore, we will expand function f(x)=(1+x)m{f{{\left({x}\right)}}}={{\left({1}+{x}\right)}}^{{m}} instead.

It is known that f(k)(x)=m(m1)(mk+1)(1+x)mk{{f}}^{{{\left({k}\right)}}}{\left({x}\right)}={m}{\left({m}-{1}\right)}\ldots{\left({m}-{k}+{1}\right)}{{\left({1}+{x}\right)}}^{{{m}-{k}}} for any natural k{k} from 1 to n{n}.

So, f(0)=1{f{{\left({0}\right)}}}={1} and f(k)(0)=m(m1)(mk+1){{f}}^{{{\left({k}\right)}}}{\left({0}\right)}={m}{\left({m}-{1}\right)}\ldots{\left({m}-{k}+{1}\right)}.

Therefore, (1+x)m1+mx+m(m1)2!x2++m(m1)(mn+1)n!xn{\color{blue}{{{{\left({1}+{x}\right)}}^{{m}}\approx{1}+{m}{x}+\frac{{{m}{\left({m}-{1}\right)}}}{{{2}!}}{{x}}^{{2}}+\ldots+\frac{{{m}{\left({m}-{1}\right)}\ldots{\left({m}-{n}+{1}\right)}}}{{{n}!}}{{x}}^{{n}}}}}.

In particular, if n=2{n}={2} and m=1,12,12{m}=-{1},\frac{{1}}{{2}},-\frac{{1}}{{2}} we have that

11+x1x+x2\frac{{1}}{{{1}+{x}}}\approx{1}-{x}+{{x}}^{{2}},

1+x1+12x+18x2\sqrt{{{1}+{x}}}\approx{1}+\frac{{1}}{{2}}{x}+\frac{{1}}{{8}}{{x}}^{{2}},

11+x112x+38x2\frac{{1}}{{\sqrt{{{1}+{x}}}}}\approx{1}-\frac{{1}}{{2}}{x}+\frac{{3}}{{8}}{{x}}^{{2}}.

Finally, consider function f(x)=ln(x){f{{\left({x}\right)}}}={\ln{{\left({x}\right)}}}. Since ln(x){\ln{{\left({x}\right)}}}\to-\infty as x0+{x}\to{{0}}^{+}, we will consider function y=ln(1+x){y}={\ln{{\left({1}+{x}\right)}}} instead.

We have that f(x)=11+x{f{'}}{\left({x}\right)}=\frac{{1}}{{{1}+{x}}}, f(x)=1(1+x)2{f{''}}{\left({x}\right)}=-\frac{{1}}{{{\left({1}+{x}\right)}}^{{2}}}, f(x)=2(x+1)3{f{'''}}{\left({x}\right)}=\frac{{2}}{{{\left({x}+{1}\right)}}^{{3}}}, ..., f(k)(x)=(1)k1(k1)!(1+x)n{{f}}^{{{\left({k}\right)}}}{\left({x}\right)}=\frac{{{{\left(-{1}\right)}}^{{{k}-{1}}}{\left({k}-{1}\right)}!}}{{{\left({1}+{x}\right)}}^{{n}}}.

f(0)=0{f{{\left({0}\right)}}}={0}, f(k)(0)=(1)k1(k1)!{{f}}^{{{\left({k}\right)}}}{\left({0}\right)}={{\left(-{1}\right)}}^{{{k}-{1}}}{\left({k}-{1}\right)}!.

So,

ln(1+x)xx22+x33x44++(1)n1xnn{\color{red}{{{\ln{{\left({1}+{x}\right)}}}\approx{x}-\frac{{{{x}}^{{2}}}}{{2}}+\frac{{{{x}}^{{3}}}}{{3}}-\frac{{{{x}}^{{4}}}}{{4}}+\ldots+{{\left(-{1}\right)}}^{{{n}-{1}}}\frac{{{{x}}^{{n}}}}{{n}}}}}.

Using expansions of simple functions, we can write expansions of composite functions withou calculating derivatives.

Example 1. Write expansion of esin(x){{e}}^{{{\sin{{\left({x}\right)}}}}} to x3{{x}}^{{3}}. In other words find third degree Maclurin polynomial.

We know that ex1+x+12x2+16x3{{e}}^{{x}}\approx{1}+{x}+\frac{{1}}{{2}}{{x}}^{{2}}+\frac{{1}}{{6}}{{x}}^{{3}}.

Thus, esin(x)1+sin(x)+12sin2(x)+16sin3(x){{e}}^{{{\sin{{\left({x}\right)}}}}}\approx{1}+{\sin{{\left({x}\right)}}}+\frac{{1}}{{2}}{{\sin}}^{{2}}{\left({x}\right)}+\frac{{1}}{{6}}{{\sin}}^{{3}}{\left({x}\right)}.

But sin(x)x16x3{\sin{{\left({x}\right)}}}\approx{x}-\frac{{1}}{{6}}{{x}}^{{3}}, so

esin(x)1+(x16x3)+12(x16x3)2+16(x16x3)3{{e}}^{{{\sin{{\left({x}\right)}}}}}\approx{1}+{\left({x}-\frac{{1}}{{6}}{{x}}^{{3}}\right)}+\frac{{1}}{{2}}{{\left({x}-\frac{{1}}{{6}}{{x}}^{{3}}\right)}}^{{2}}+\frac{{1}}{{6}}{{\left({x}-\frac{{1}}{{6}}{{x}}^{{3}}\right)}}^{{3}}.

After simpilfying and neglecting terms with x{x} whose exponent is higher than 3, we obtain that esin(x)1+x+12x2{{e}}^{{{\sin{{\left({x}\right)}}}}}\approx{1}+{x}+\frac{{1}}{{2}}{{x}}^{{2}}.

Note, that term involving x3{{x}}^{{3}} vanished.

Example 2. Write expansion of ln(cos(x)){\ln{{\left({\cos{{\left({x}\right)}}}\right)}}} up to x6{{x}}^{{6}}.

We don't have expansion for ln(x){\ln{{\left({x}\right)}}} but we have it for ln(1+x){\ln{{\left({1}+{x}\right)}}}, so we need to rewrite function as ln(1+(cos(x)1)){\ln{{\left({1}+{\left({\cos{{\left({x}\right)}}}-{1}\right)}\right)}}}.

Now, ln(1+(cos(x)1))(cos(x)1)12(cos(x)1)2+13(cos(x)1)3{\ln{{\left({1}+{\left({\cos{{\left({x}\right)}}}-{1}\right)}\right)}}}\approx{\left({\cos{{\left({x}\right)}}}-{1}\right)}-\frac{{1}}{{2}}{{\left({\cos{{\left({x}\right)}}}-{1}\right)}}^{{2}}+\frac{{1}}{{3}}{{\left({\cos{{\left({x}\right)}}}-{1}\right)}}^{{3}}.

Note, that we don't write expansion of logarithm further, because lowest term in the expansion of cos(x)1{\cos{{\left({x}\right)}}}-{1} is x2{{x}}^{{2}} and (x2)3=x6{{\left({{x}}^{{2}}\right)}}^{{3}}={{x}}^{{6}}, further expansion of logarithm will give much higher powers.

Now, cos(x)112x2+124x41720x6{\cos{{\left({x}\right)}}}\approx{1}-\frac{{1}}{{2}}{{x}}^{{2}}+\frac{{1}}{{24}}{{x}}^{{4}}-\frac{{1}}{{{720}}}{{x}}^{{6}}.

So, ln(1+(cos(x)1))(12x2+124x41720x2)12(12x2+124x41720x6)2+{\ln{{\left({1}+{\left({\cos{{\left({x}\right)}}}-{1}\right)}\right)}}}\approx{\left(-\frac{{1}}{{2}}{{x}}^{{2}}+\frac{{1}}{{24}}{{x}}^{{4}}-\frac{{1}}{{720}}{{x}}^{{2}}\right)}-\frac{{1}}{{2}}{{\left(-\frac{{1}}{{2}}{{x}}^{{2}}+\frac{{1}}{{24}}{{x}}^{{4}}-\frac{{1}}{{720}}{{x}}^{{6}}\right)}}^{{2}}+

+13(12x2+124x41720x6)3+\frac{{1}}{{3}}{{\left(-\frac{{1}}{{2}}{{x}}^{{2}}+\frac{{1}}{{24}}{{x}}^{{4}}-\frac{{1}}{{720}}{{x}}^{{6}}\right)}}^{{3}}.

After simpifying and deleting terms with power of x{x} not higher than 6, we will obtain that

ln(cos(x))12x2112x4145x6{\ln{{\left({\cos{{\left({x}\right)}}}\right)}}}\approx-\frac{{1}}{{2}}{{x}}^{{2}}-\frac{{1}}{{12}}{{x}}^{{4}}-\frac{{1}}{{45}}{{x}}^{{6}}.

Similarly we can find that

ln(x+1+x2)=x16x3+340x5{\ln{{\left({x}+\sqrt{{{1}+{{x}}^{{2}}}}\right)}}}={x}-\frac{{1}}{{6}}{{x}}^{{3}}+\frac{{3}}{{40}}{{x}}^{{5}},

ln(sin(x)x)16x21180x412835x6{\ln{{\left(\frac{{{\sin{{\left({x}\right)}}}}}{{x}}\right)}}}\approx-\frac{{1}}{{6}}{{x}}^{{2}}-\frac{{1}}{{180}}{{x}}^{{4}}-\frac{{1}}{{2835}}{{x}}^{{6}}.

All these formulas can be obtained using direct formula, i.e. calculating derivatives.

Also, be cautios when you're asked to write expansion of the function.

For example, at the start of this note we wrote expansion for ex{{e}}^{{x}}, assuming that x{x} (argument) is near 0.

In the above example we wrote expansion of esin(x){{e}}^{{{\sin{{\left({x}\right)}}}}} using known Maclaurin polynomials. This was correct, because as x0{x}\to{0} sin(x)0{\sin{{\left({x}\right)}}}\to{0}, so argument of exponent approaches 0.

But we can't use above technique to find expansion of ecos(x){{e}}^{{{\cos{{\left({x}\right)}}}}}, because when x0{x}\to{0} cos(x)1{\cos{{\left({x}\right)}}}\to{1} and argument of exponent approaches 1. So, again be cautious!

Example 3. Find expansion of ecos(x){{e}}^{{{\cos{{\left({x}\right)}}}}} up to x4{{x}}^{{4}}.

As was stated above we can't use above technique. But we can transform function into form that will allow to use Maclaurin polynomials.

ecos(x)=ecos(x)1+1=eecos(x)1{{e}}^{{{\cos{{\left({x}\right)}}}}}={{e}}^{{{\cos{{\left({x}\right)}}}-{1}+{1}}}={e}\cdot{{e}}^{{{\cos{{\left({x}\right)}}}-{1}}}.

Now, we can apply Maclaurin formulas for function ecos(x)1{{e}}^{{{\cos{{\left({x}\right)}}}-{1}}} because cos(x)10{\cos{{\left({x}\right)}}}-{1}\to{0} as x0{x}\to{0}.

ecos(x)11+(cos(x)1)+12(cos(x)1)2.{{e}}^{{{\cos{{\left({x}\right)}}}-{1}}}\approx{1}+{\left({\cos{{\left({x}\right)}}}-{1}\right)}+\frac{{1}}{{2}}{{\left({\cos{{\left({x}\right)}}}-{1}\right)}}^{{2}}. Now, since cos(x)112x2+124x4{\cos{{\left({x}\right)}}}-{1}\approx-\frac{{1}}{{2}}{{x}}^{{2}}+\frac{{1}}{{24}}{{x}}^{{4}} we have that

ecos(x)11+(12x2+124x4)+12(12x2+124x4)2{{e}}^{{{\cos{{\left({x}\right)}}}-{1}}}\approx{1}+{\left(-\frac{{1}}{{2}}{{x}}^{{2}}+\frac{{1}}{{24}}{{x}}^{{4}}\right)}+\frac{{1}}{{2}}{{\left(-\frac{{1}}{{2}}{{x}}^{{2}}+\frac{{1}}{{24}}{{x}}^{{4}}\right)}}^{{2}}.

After simplifying we obtain that ecos(x)1112x2+16x4{{e}}^{{{\cos{{\left({x}\right)}}}-{1}}}\approx{1}-\frac{{1}}{{2}}{{x}}^{{2}}+\frac{{1}}{{6}}{{x}}^{{4}}.

So, ecos(x)=eecos(x)1ee2x2+e6x4{{e}}^{{{\cos{{\left({x}\right)}}}}}={e}\cdot{{e}}^{{{\cos{{\left({x}\right)}}}-{1}}}\approx{e}-\frac{{e}}{{2}}{{x}}^{{2}}+\frac{{e}}{{6}}{{x}}^{{4}}.