Category: Theorems of Differential Calculus

Fermat's Theorem

Knowing derivative of function f(x){f{{\left({x}\right)}}} allows us to make some conclusions about behavior of function y=f(x){y}={f{{\left({x}\right)}}}.

Fermat's Theorem. Suppose function y=f(x)y={f{{\left({x}\right)}}} is defined on interval [a,b]{\left[{a},{b}\right]} and at some point c(a,b){c}\in{\left({a},{b}\right)} takes maximum (minimum) value. If exist finite derivative f(c){f{'}}{\left({c}\right)} then f(c)=0{f{'}}{\left({c}\right)}={0}.

Rolle's Theorem

Rolle's Theorem. Suppose following three condition hold for function y=f(x)y={f{{\left({x}\right)}}}:

  1. function is defined and continuous on closed interval [a,b]{\left[{a},{b}\right]};
  2. exists finite derivative f(x){f{'}}{\left({x}\right)} on interval (a,b){\left({a},{b}\right)};
  3. f(a)=f(b){f{{\left({a}\right)}}}={f{{\left({b}\right)}}}.

then there exists point c{c} (a<c<b)\left({a}<{c}<{b}\right) such that f(c)=0{f{'}}{\left({c}\right)}={0}.

Mean Value Theorem

Mean Value Theorem (Lagrange Theorem). Suppose that function y=f(x)y={f{{\left({x}\right)}}} is defined and continuous on closed interval [a,b]{\left[{a},{b}\right]} and exists finite derivative f(x){f{'}}{\left({x}\right)} on interval (a,b){\left({a},{b}\right)}. Then there exists a point cc (a<c<b)\left({a}<{c}<{b}\right) such that f(b)f(a)ba=f(c)\frac{{{f{{\left({b}\right)}}}-{f{{\left({a}\right)}}}}}{{{b}-{a}}}={f{'}}{\left({c}\right)}.