Table of Antiderivatives

Below is a short list of functions and their general antiderivatives (we will give more complete table later).

Note that f(x)dx=F(x)+A\int{f{{\left({x}\right)}}}{d}{x}={F}{\left({x}\right)}+{A} and g(x)dx=G(x)+B\int{g{{\left({x}\right)}}}{d}{x}={G}{\left({x}\right)}+{B} where A{A} and B{B} are arbitrary constant.

Attention! When we integrate two functions we actually obtain 2 constants:

(f(x)±g(x))dx=f(x)dx±g(x)dx=F(x)+A±(G(x)+B)\int{\left({f{{\left({x}\right)}}}\pm{g{{\left({x}\right)}}}\right)}{d}{x}=\int{f{{\left({x}\right)}}}{d}{x}\pm\int{g{{\left({x}\right)}}}{d}{x}={F}{\left({x}\right)}+{A}\pm{\left({G}{\left({x}\right)}+{B}\right)}.

If we denote C=A±B{C}={A}\pm{B} then C{C} will be new arbitrary constant and (f(x)±g(x))dx=F(x)±G(x)+C\int{\left({f{{\left({x}\right)}}}\pm{g{{\left({x}\right)}}}\right)}{d}{x}={F}{\left({x}\right)}\pm{G}{\left({x}\right)}+{C}.

Function General Antiderivative
af(x)dx\int{a}{f{{\left({x}\right)}}}{d}{x} aF(x)+C{a}{F}{\left({x}\right)}+{C}
(f(x)±g(x))dx\int{\left({f{{\left({x}\right)}}}\pm{g{{\left({x}\right)}}}\right)}{d}{x} F(x)±G(x)+C{F}{\left({x}\right)}\pm{G}{\left({x}\right)}+{C}
0dx\int{0}\cdot{d}{x} C{C}
1dx\int{1}\cdot{d}{x} x+C{x}+{C}
xndx\int{{x}}^{{n}}{d}{x} {xn+1n+1+Cifn1lnx+Cifn=1{\left\{\begin{array}{c}\frac{{{{x}}^{{{n}+{1}}}}}{{{n}+{1}}}+{C}{\quad\text{if}\quad}{n}\ne-{1}\\{\ln}{\left|{x}\right|}+{C}{\quad\text{if}\quad}{n}=-{1}\\ \end{array}\right.}
axdx\int{{a}}^{{x}}{d}{x} axln(a)+C\frac{{{{a}}^{{x}}}}{{{\ln{{\left({a}\right)}}}}}+{C}
exdx\int{{e}}^{{x}}{d}{x} ex+C{{e}}^{{x}}+{C}
cos(x)dx\int{\cos{{\left({x}\right)}}}{d}{x} sin(x)+C{\sin{{\left({x}\right)}}}+{C}
sin(x)dx\int{\sin{{\left({x}\right)}}}{d}{x} cos(x)+C-{\cos{{\left({x}\right)}}}+{C}
sec2(x)dx\int{{\sec}}^{{2}}{\left({x}\right)}{d}{x} tan(x)+C{\tan{{\left({x}\right)}}}+{C}
csc2(x)dx\int{{\csc}}^{{2}}{\left({x}\right)}{d}{x} cot(x)+C-{\cot{{\left({x}\right)}}}+{C}
sec(x)tan(x)dx\int{\sec{{\left({x}\right)}}}{\tan{{\left({x}\right)}}}{d}{x} sec(x)+C{\sec{{\left({x}\right)}}}+{C}
11x2dx\int\frac{{1}}{\sqrt{{{1}-{{x}}^{{2}}}}}{d}{x} arcsin(x)+C{\operatorname{arcsin}{{\left({x}\right)}}}+{C}
11+x2dx\int\frac{{1}}{{{1}+{{x}}^{{2}}}}{d}{x} arctan(x)+C{\operatorname{arctan}{{\left({x}\right)}}}+{C}