- Home
- Math Notes
- Calculus II
- Antiderivative and Indefinite Integral
Table of Antiderivatives
Below is a short list of functions and their general antiderivatives (we will give more complete table later).
Note that ∫f(x)dx=F(x)+A and ∫g(x)dx=G(x)+B where A and B are arbitrary constant.
Attention! When we integrate two functions we actually obtain 2 constants:
∫(f(x)±g(x))dx=∫f(x)dx±∫g(x)dx=F(x)+A±(G(x)+B).
If we denote C=A±B then C will be new arbitrary constant and ∫(f(x)±g(x))dx=F(x)±G(x)+C.
Function | General Antiderivative |
∫af(x)dx | aF(x)+C |
∫(f(x)±g(x))dx | F(x)±G(x)+C |
∫0⋅dx | C |
∫1⋅dx | x+C |
∫xndx | {n+1xn+1+Cifn=−1ln∣x∣+Cifn=−1 |
∫axdx | ln(a)ax+C |
∫exdx | ex+C |
∫cos(x)dx | sin(x)+C |
∫sin(x)dx | −cos(x)+C |
∫sec2(x)dx | tan(x)+C |
∫csc2(x)dx | −cot(x)+C |
∫sec(x)tan(x)dx | sec(x)+C |
∫1−x21dx | arcsin(x)+C |
∫1+x21dx | arctan(x)+C |