We know how to find the volume of a solid of revolution obtained by rotating a region about a horizontal or vertical line (see Method of Disks/Rings and Method of Cylindrical Shells ). But what if we rotate about a slanted line, that is, a line that is neither horizontal nor vertical?
Let C {C} C be the arc of the curve y = f ( x ) {y}={f{{\left({x}\right)}}} y = f ( x ) between the points P = ( p , f ( p ) ) {P}={\left({p},{f{{\left({p}\right)}}}\right)} P = ( p , f ( p ) ) and B = ( q , f ( q ) ) {B}={\left({q},{f{{\left({q}\right)}}}\right)} B = ( q , f ( q ) ) and let R {R} R be the region bounded by C {C} C , by the line y = m x + b {y}={m}{x}+{b} y = m x + b (which lies entirely below C {C} C ), and by the perpendiculars to the line from A {A} A and B {B} B .
We first will try to find area of region R {R} R . For this we will need another sketch.
We again approximate area by the sum or rectangles, but this time rectangles are perpendicular to the line y = m x + b {y}={m}{x}+{b} y = m x + b . Area of i-th rectangle is L i Δ u {L}_{{i}}\Delta{u} L i Δ u . Thus, approximate area of R {R} R is A ≈ ∑ i = 1 n L i Δ u {A}\approx{\sum_{{{i}={1}}}^{{n}}}{L}_{{i}}\Delta{u} A ≈ ∑ i = 1 n L i Δ u .
Taking n {n} n very large we have that A = lim n → ∞ ∑ i = 1 n L i Δ u {A}=\lim_{{{n}\to\infty}}{\sum_{{{i}={1}}}^{{n}}}{L}_{{i}}\Delta{u} A = lim n → ∞ ∑ i = 1 n L i Δ u .
We need to express L i {L}_{{i}} L i and Δ u \Delta{u} Δ u in terms of Δ x \Delta{x} Δ x .
From the sketch we immediately have that tan ( α ) = f ′ ( x i ) {\tan{{\left(\alpha\right)}}}={f{'}}{\left({x}_{{i}}\right)} tan ( α ) = f ′ ( x i ) (slope of tangent line) and tan ( β ) = m {\tan{{\left(\beta\right)}}}={m} tan ( β ) = m .
Also, D i = Δ x cos ( α ) {D}_{{i}}=\frac{{\Delta{x}}}{{\cos{{\left(\alpha\right)}}}} D i = c o s ( α ) Δ x , and Δ u = D i cos ( β − α ) = D i ( cos ( β ) cos ( α ) + sin ( α ) sin ( β ) ) \Delta{u}={D}_{{i}}{\cos{{\left(\beta-\alpha\right)}}}={D}_{{i}}{\left({\cos{{\left(\beta\right)}}}{\cos{{\left(\alpha\right)}}}+{\sin{{\left(\alpha\right)}}}{\sin{{\left(\beta\right)}}}\right)} Δ u = D i cos ( β − α ) = D i ( cos ( β ) cos ( α ) + sin ( α ) sin ( β ) ) .
From this we have that Δ u = Δ x cos ( α ) ( cos ( β ) cos ( α ) + sin ( α ) sin ( β ) ) = Δ x ( cos ( β ) + tan ( α ) sin ( β ) ) \Delta{u}=\frac{{\Delta{x}}}{{{\cos{{\left(\alpha\right)}}}}}{\left({\cos{{\left(\beta\right)}}}{\cos{{\left(\alpha\right)}}}+{\sin{{\left(\alpha\right)}}}{\sin{{\left(\beta\right)}}}\right)}=\Delta{x}{\left({\cos{{\left(\beta\right)}}}+{\tan{{\left(\alpha\right)}}}{\sin{{\left(\beta\right)}}}\right)} Δ u = c o s ( α ) Δ x ( cos ( β ) cos ( α ) + sin ( α ) sin ( β ) ) = Δ x ( cos ( β ) + tan ( α ) sin ( β ) ) .
Now, we need to express sin ( β ) {\sin{{\left(\beta\right)}}} sin ( β ) and cos ( β ) {\cos{{\left(\beta\right)}}} cos ( β ) in terms of tan ( β ) {\tan{{\left(\beta\right)}}} tan ( β ) .
From identity tan 2 ( β ) + 1 = 1 cos 2 ( β ) {{\tan}}^{{2}}{\left(\beta\right)}+{1}=\frac{{1}}{{{{\cos}}^{{2}}{\left(\beta\right)}}} tan 2 ( β ) + 1 = c o s 2 ( β ) 1 we have that cos ( β ) = 1 1 + tan 2 ( β ) = 1 1 + m 2 {\cos{{\left(\beta\right)}}}=\sqrt{{\frac{{1}}{{{1}+{{\tan}}^{{2}}{\left(\beta\right)}}}}}=\sqrt{{\frac{{1}}{{{1}+{{m}}^{{2}}}}}} cos ( β ) = 1 + t a n 2 ( β ) 1 = 1 + m 2 1 .
Since sin 2 ( β ) + cos 2 ( β ) = 1 {{\sin}}^{{2}}{\left(\beta\right)}+{{\cos}}^{{2}}{\left(\beta\right)}={1} sin 2 ( β ) + cos 2 ( β ) = 1 then sin ( β ) = m m 2 + 1 {\sin{{\left(\beta\right)}}}=\frac{{m}}{\sqrt{{{{m}}^{{2}}+{1}}}} sin ( β ) = m 2 + 1 m .
Therefore, Δ u = Δ x ( 1 m 2 + 1 + f ′ ( x i ) m m 2 + 1 ) = Δ x 1 + m f ′ ( x i ) m 2 + 1 \Delta{u}=\Delta{x}{\left(\frac{{1}}{{\sqrt{{{{m}}^{{2}}+{1}}}}}+{f{'}}{\left({x}_{{i}}\right)}\frac{{m}}{\sqrt{{{{m}}^{{2}}+{1}}}}\right)}=\Delta{x}\frac{{{1}+{m}{f{'}}{\left({x}_{{i}}\right)}}}{{\sqrt{{{{m}}^{{2}}+{1}}}}} Δ u = Δ x ( m 2 + 1 1 + f ′ ( x i ) m 2 + 1 m ) = Δ x m 2 + 1 1 + m f ′ ( x i ) .
Now, we need to determine L i {L}_{{i}} L i .
It is fairly easy to do: L i = ( f ( x i ) − ( m x i + b ) ) cos ( β ) = f ( x i ) − m x i − b m 2 + 1 {L}_{{i}}={\left({f{{\left({x}_{{i}}\right)}}}-{\left({m}{x}_{{i}}+{b}\right)}\right)}{\cos{{\left(\beta\right)}}}=\frac{{{f{{\left({x}_{{i}}\right)}}}-{m}{x}_{{i}}-{b}}}{{\sqrt{{{{m}}^{{2}}+{1}}}}} L i = ( f ( x i ) − ( m x i + b ) ) cos ( β ) = m 2 + 1 f ( x i ) − m x i − b .
That's all. A = lim n → ∞ ∑ i = 1 n L i Δ u = f ( x i ) − m x i − b m 2 + 1 ⋅ 1 + m f ′ ( x i ) m 2 + 1 Δ x = 1 m 2 + 1 lim n → ∞ ∑ i = 1 n ( f ( x i ) − m x i − b ) ( 1 + m f ′ ( x i ) ) {A}=\lim_{{{n}\to\infty}}{\sum_{{{i}={1}}}^{{n}}}{L}_{{i}}\Delta{u}=\frac{{{f{{\left({x}_{{i}}\right)}}}-{m}{x}_{{i}}-{b}}}{\sqrt{{{{m}}^{{2}}+{1}}}}\cdot\frac{{{1}+{m}{f{'}}{\left({x}_{{i}}\right)}}}{{\sqrt{{{{m}}^{{2}}+{1}}}}}\Delta{x}=\frac{{1}}{{{{m}}^{{2}}+{1}}}\lim_{{{n}\to\infty}}{\sum_{{{i}={1}}}^{{n}}}{\left({f{{\left({x}_{{i}}\right)}}}-{m}{x}_{{i}}-{b}\right)}{\left({1}+{m}{f{'}}{\left({x}_{{i}}\right)}\right)} A = lim n → ∞ ∑ i = 1 n L i Δ u = m 2 + 1 f ( x i ) − m x i − b ⋅ m 2 + 1 1 + m f ′ ( x i ) Δ x = m 2 + 1 1 lim n → ∞ ∑ i = 1 n ( f ( x i ) − m x i − b ) ( 1 + m f ′ ( x i ) ) .
This is limit of the Riemann sum, i.e. definite integral, so
Area of region R is A = 1 m 2 + 1 ∫ p q ( f ( x ) − m x − b ) ( 1 + m f ′ ( x ) ) d x {A}=\frac{{1}}{{{{m}}^{{2}}+{1}}}{\int_{{p}}^{{q}}}{\left({f{{\left({x}\right)}}}-{m}{x}-{b}\right)}{\left({1}+{m}{f{'}}{\left({x}\right)}\right)}{d}{x} A = m 2 + 1 1 ∫ p q ( f ( x ) − m x − b ) ( 1 + m f ′ ( x ) ) d x .
Now, to find volume we use method of disks: we slice perpendicular to the line y = m x + b {y}={m}{x}+{b} y = m x + b : radius of disk is L = f ( x ) − m x − b m 2 + 1 {L}=\frac{{{f{{\left({x}\right)}}}-{m}{x}-{b}}}{\sqrt{{{{m}}^{{2}}+{1}}}} L = m 2 + 1 f ( x ) − m x − b .
Thus, A ( x ) = π L 2 = π ( f ( x ) − m x − b m 2 + 1 ) 2 {A}{\left({x}\right)}=\pi{{L}}^{{2}}=\pi{{\left(\frac{{{f{{\left({x}\right)}}}-{m}{x}-{b}}}{{\sqrt{{{{m}}^{{2}}+{1}}}}}\right)}}^{{2}} A ( x ) = π L 2 = π ( m 2 + 1 f ( x ) − m x − b ) 2 .
Therefore, V = ∫ p q π L 2 d u = ∫ p q π ( f ( x ) − m x − b m 2 + 1 ) 2 1 + m f ′ ( x ) m 2 + 1 d x {V}={\int_{{p}}^{{q}}}\pi{{L}}^{{2}}{d}{u}={\int_{{p}}^{{q}}}\pi{{\left(\frac{{{f{{\left({x}\right)}}}-{m}{x}-{b}}}{\sqrt{{{{m}}^{{2}}+{1}}}}\right)}}^{{2}}\frac{{{1}+{m}{f{'}}{\left({x}\right)}}}{\sqrt{{{{m}}^{{2}}+{1}}}}{d}{x} V = ∫ p q π L 2 d u = ∫ p q π ( m 2 + 1 f ( x ) − m x − b ) 2 m 2 + 1 1 + m f ′ ( x ) d x .
Volume of Solid of Revolution around Slant Line y = m x + b {y}={m}{x}+{b} y = m x + b is V = π ( m 2 + 1 ) 3 2 ∫ p q ( f ( x ) − m x − b ) 2 ( 1 + m f ′ ( x ) ) d x {V}=\frac{\pi}{{{\left({{m}}^{{2}}+{1}\right)}}^{{\frac{{3}}{{2}}}}}{\int_{{p}}^{{q}}}{{\left({f{{\left({x}\right)}}}-{m}{x}-{b}\right)}}^{{2}}{\left({1}+{m}{f{'}}{\left({x}\right)}\right)}{d}{x} V = ( m 2 + 1 ) 2 3 π ∫ p q ( f ( x ) − m x − b ) 2 ( 1 + m f ′ ( x ) ) d x .
Example . Find the area of region R {R} R bounded by f ( x ) = x + sin ( x ) {f{{\left({x}\right)}}}={x}+{\sin{{\left({x}\right)}}} f ( x ) = x + sin ( x ) , by the line y = x − 2 {y}={x}-{2} y = x − 2 , and by the perpendiculars to the line from P = ( 0 , 0 ) {P}={\left({0},{0}\right)} P = ( 0 , 0 ) and Q = ( 2 π , 2 π ) {Q}={\left({2}\pi,{2}\pi\right)} Q = ( 2 π , 2 π ) . Find volume of the solid obtained by rotating the region R {R} R about the line y = x − 2 {y}={x}-{2} y = x − 2 .
Here we have m = 1 {m}={1} m = 1 , b = − 2 {b}=-{2} b = − 2 , f ( x ) = x + sin ( x ) {f{{\left({x}\right)}}}={x}+{\sin{{\left({x}\right)}}} f ( x ) = x + sin ( x ) , thus, f ′ ( x ) = 1 + cos ( x ) {f{'}}{\left({x}\right)}={1}+{\cos{{\left({x}\right)}}} f ′ ( x ) = 1 + cos ( x ) .
Therefore, A = 1 1 2 + 1 ∫ 0 2 π ( x + sin ( x ) − x + 2 ) ( 1 + 1 ⋅ ( 1 + cos ( x ) ) ) d x = {A}=\frac{{1}}{{{{1}}^{{2}}+{1}}}{\int_{{0}}^{{{2}\pi}}}{\left({x}+{\sin{{\left({x}\right)}}}-{x}+{2}\right)}{\left({1}+{1}\cdot{\left({1}+{\cos{{\left({x}\right)}}}\right)}\right)}{d}{x}= A = 1 2 + 1 1 ∫ 0 2 π ( x + sin ( x ) − x + 2 ) ( 1 + 1 ⋅ ( 1 + cos ( x ) ) ) d x =
= 1 2 ∫ 0 2 π ( 2 + sin ( x ) ) ( 2 + cos ( x ) ) d x = =\frac{{1}}{{2}}{\int_{{0}}^{{{2}\pi}}}{\left({2}+{\sin{{\left({x}\right)}}}\right)}{\left({2}+{\cos{{\left({x}\right)}}}\right)}{d}{x}= = 2 1 ∫ 0 2 π ( 2 + sin ( x ) ) ( 2 + cos ( x ) ) d x =
= 1 2 ∫ 0 2 π ( 4 + 2 cos ( x ) + 2 sin ( x ) + sin ( x ) cos ( x ) ) d x = =\frac{{1}}{{2}}{\int_{{0}}^{{{2}\pi}}}{\left({4}+{2}{\cos{{\left({x}\right)}}}+{2}{\sin{{\left({x}\right)}}}+{\sin{{\left({x}\right)}}}{\cos{{\left({x}\right)}}}\right)}{d}{x}= = 2 1 ∫ 0 2 π ( 4 + 2 cos ( x ) + 2 sin ( x ) + sin ( x ) cos ( x ) ) d x =
= 1 2 ∫ 0 2 π ( 4 + 2 cos ( x ) + 2 sin ( x ) + 1 2 sin ( 2 x ) ) d x = =\frac{{1}}{{2}}{\int_{{0}}^{{{2}\pi}}}{\left({4}+{2}{\cos{{\left({x}\right)}}}+{2}{\sin{{\left({x}\right)}}}+\frac{{1}}{{2}}{\sin{{\left({2}{x}\right)}}}\right)}{d}{x}= = 2 1 ∫ 0 2 π ( 4 + 2 cos ( x ) + 2 sin ( x ) + 2 1 sin ( 2 x ) ) d x =
= 1 2 ( 4 x + 2 sin ( x ) − 2 cos ( x ) − 1 4 cos ( 2 x ) ) ∣ 0 2 π = 1 2 ( 8 π − 2 − 1 4 + 2 + 1 4 ) = 4 π =\frac{{1}}{{2}}{\left({4}{x}+{2}{\sin{{\left({x}\right)}}}-{2}{\cos{{\left({x}\right)}}}-\frac{{1}}{{4}}{\cos{{\left({2}{x}\right)}}}\right)}{{\mid}_{{0}}^{{{2}\pi}}}=\frac{{1}}{{2}}{\left({8}\pi-{2}-\frac{{1}}{{4}}+{2}+\frac{{1}}{{4}}\right)}={4}\pi = 2 1 ( 4 x + 2 sin ( x ) − 2 cos ( x ) − 4 1 cos ( 2 x ) ) ∣ 0 2 π = 2 1 ( 8 π − 2 − 4 1 + 2 + 4 1 ) = 4 π .
And volume is
V = π ( 1 2 + 1 ) 3 2 ∫ 0 2 π ( x + sin ( x ) − x + 2 ) 2 ( 1 + 1 ⋅ ( 1 + cos ( x ) ) ) d x = π 8 ∫ 0 2 π ( 2 + sin ( x ) ) 2 ( 2 + cos ( x ) ) d x = {V}=\frac{\pi}{{{\left({{1}}^{{2}}+{1}\right)}}^{{\frac{{3}}{{2}}}}}{\int_{{0}}^{{{2}\pi}}}{{\left({x}+{\sin{{\left({x}\right)}}}-{x}+{2}\right)}}^{{2}}{\left({1}+{1}\cdot{\left({1}+{\cos{{\left({x}\right)}}}\right)}\right)}{d}{x}=\frac{\pi}{\sqrt{{{8}}}}{\int_{{0}}^{{{2}\pi}}}{{\left({2}+{\sin{{\left({x}\right)}}}\right)}}^{{2}}{\left({2}+{\cos{{\left({x}\right)}}}\right)}{d}{x}= V = ( 1 2 + 1 ) 2 3 π ∫ 0 2 π ( x + sin ( x ) − x + 2 ) 2 ( 1 + 1 ⋅ ( 1 + cos ( x ) ) ) d x = 8 π ∫ 0 2 π ( 2 + sin ( x ) ) 2 ( 2 + cos ( x ) ) d x =
= π 8 ∫ 0 2 π ( 4 + 4 sin ( x ) + sin 2 ( x ) ) ( 2 + cos ( x ) ) d x = =\frac{\pi}{\sqrt{{{8}}}}{\int_{{0}}^{{{2}\pi}}}{\left({4}+{4}{\sin{{\left({x}\right)}}}+{{\sin}}^{{2}}{\left({x}\right)}\right)}{\left({2}+{\cos{{\left({x}\right)}}}\right)}{d}{x}= = 8 π ∫ 0 2 π ( 4 + 4 sin ( x ) + sin 2 ( x ) ) ( 2 + cos ( x ) ) d x =
= π 8 ∫ 0 2 π ( 8 + 4 cos ( x ) + 8 sin ( x ) + 4 sin ( x ) cos ( x ) + 2 sin 2 ( x ) + sin 2 ( x ) cos ( x ) ) d x =\frac{\pi}{\sqrt{{{8}}}}{\int_{{0}}^{{{2}\pi}}}{\left({8}+{4}{\cos{{\left({x}\right)}}}+{8}{\sin{{\left({x}\right)}}}+{4}{\sin{{\left({x}\right)}}}{\cos{{\left({x}\right)}}}+{2}{{\sin}}^{{2}}{\left({x}\right)}+{{\sin}}^{{2}}{\left({x}\right)}{\cos{{\left({x}\right)}}}\right)}{d}{x} = 8 π ∫ 0 2 π ( 8 + 4 cos ( x ) + 8 sin ( x ) + 4 sin ( x ) cos ( x ) + 2 sin 2 ( x ) + sin 2 ( x ) cos ( x ) ) d x
Now we use double angle formulas and integral can be rewritten as
= π 8 ∫ 0 2 π ( 8 + 4 cos ( x ) + 8 sin ( x ) + 2 sin ( 2 x ) + 1 − cos ( 2 x ) + sin 2 ( x ) cos ( x ) ) d x = =\frac{\pi}{\sqrt{{{8}}}}{\int_{{0}}^{{{2}\pi}}}{\left({8}+{4}{\cos{{\left({x}\right)}}}+{8}{\sin{{\left({x}\right)}}}+{2}{\sin{{\left({2}{x}\right)}}}+{1}-{\cos{{\left({2}{x}\right)}}}+{{\sin}}^{{2}}{\left({x}\right)}{\cos{{\left({x}\right)}}}\right)}{d}{x}= = 8 π ∫ 0 2 π ( 8 + 4 cos ( x ) + 8 sin ( x ) + 2 sin ( 2 x ) + 1 − cos ( 2 x ) + sin 2 ( x ) cos ( x ) ) d x =
= π 8 ∫ 0 2 π ( 9 + 4 cos ( x ) + 8 sin ( x ) + 2 sin ( 2 x ) − cos ( 2 x ) + sin 2 ( x ) cos ( x ) ) d x = =\frac{\pi}{\sqrt{{{8}}}}{\int_{{0}}^{{{2}\pi}}}{\left({9}+{4}{\cos{{\left({x}\right)}}}+{8}{\sin{{\left({x}\right)}}}+{2}{\sin{{\left({2}{x}\right)}}}-{\cos{{\left({2}{x}\right)}}}+{{\sin}}^{{2}}{\left({x}\right)}{\cos{{\left({x}\right)}}}\right)}{d}{x}= = 8 π ∫ 0 2 π ( 9 + 4 cos ( x ) + 8 sin ( x ) + 2 sin ( 2 x ) − cos ( 2 x ) + sin 2 ( x ) cos ( x ) ) d x =
= π 8 ( 9 x + 4 sin ( x ) − 8 cos ( x ) − cos ( 2 x ) − 1 2 sin ( 2 x ) + 1 3 sin 3 ( x ) ) ∣ 0 2 π = =\frac{\pi}{\sqrt{{{8}}}}{\left({9}{x}+{4}{\sin{{\left({x}\right)}}}-{8}{\cos{{\left({x}\right)}}}-{\cos{{\left({2}{x}\right)}}}-\frac{{1}}{{2}}{\sin{{\left({2}{x}\right)}}}+\frac{{1}}{{3}}{{\sin}}^{{3}}{\left({x}\right)}\right)}{{\mid}_{{0}}^{{{2}\pi}}}= = 8 π ( 9 x + 4 sin ( x ) − 8 cos ( x ) − cos ( 2 x ) − 2 1 sin ( 2 x ) + 3 1 sin 3 ( x ) ) ∣ 0 2 π =
= π 8 ( 18 π − 8 − 1 + 8 + 1 ) = π 8 ⋅ 18 π = 9 π 2 2 =\frac{\pi}{\sqrt{{{8}}}}{\left({18}\pi-{8}-{1}+{8}+{1}\right)}=\frac{\pi}{\sqrt{{{8}}}}\cdot{18}\pi=\frac{{{9}{\pi}^{{2}}}}{\sqrt{{{2}}}} = 8 π ( 18 π − 8 − 1 + 8 + 1 ) = 8 π ⋅ 18 π = 2 9 π 2 .
Note, how we used substitution u = sin ( x ) {u}={\sin{{\left({x}\right)}}} u = sin ( x ) for integral ∫ sin 2 ( x ) cos ( x ) d x \int{{\sin}}^{{2}}{\left({x}\right)}{\cos{{\left({x}\right)}}}{d}{x} ∫ sin 2 ( x ) cos ( x ) d x to obtain that ∫ sin 2 ( x ) cos ( x ) d x = 1 3 sin 3 ( x ) d x \int{{\sin}}^{{2}}{\left({x}\right)}{\cos{{\left({x}\right)}}}{d}{x}=\frac{{1}}{{3}}{{\sin}}^{{3}}{\left({x}\right)}{d}{x} ∫ sin 2 ( x ) cos ( x ) d x = 3 1 sin 3 ( x ) d x .