Volume of Solid of Revolution about Slant Line

We know how to find the volume of a solid of revolution obtained by rotating a region about a horizontal or vertical line (see Method of Disks/Rings and Method of Cylindrical Shells). But what if we rotate about a slanted line, that is, a line that is neither horizontal nor vertical?rotating around slant line

Let C{C} be the arc of the curve y=f(x){y}={f{{\left({x}\right)}}} between the points P=(p,f(p)){P}={\left({p},{f{{\left({p}\right)}}}\right)} and B=(q,f(q)){B}={\left({q},{f{{\left({q}\right)}}}\right)} and let R{R} be the region bounded by C{C}, by the line y=mx+b{y}={m}{x}+{b} (which lies entirely below C{C}), and by the perpendiculars to the line from A{A} and B{B}.

We first will try to find area of region R{R}. For this we will need another sketch.

We again approximate area by the sum or rectangles, but this time rectangles are perpendicular to the line y=mx+b{y}={m}{x}+{b}. Area of i-th rectangle is LiΔu{L}_{{i}}\Delta{u}. Thus, approximate area of R{R} is Ai=1nLiΔu{A}\approx{\sum_{{{i}={1}}}^{{n}}}{L}_{{i}}\Delta{u}.

Taking n{n} very large we have that A=limni=1nLiΔu{A}=\lim_{{{n}\to\infty}}{\sum_{{{i}={1}}}^{{n}}}{L}_{{i}}\Delta{u}.

We need to express Li{L}_{{i}} and Δu\Delta{u} in terms of Δx\Delta{x}.

area of region around slant line

From the sketch we immediately have that tan(α)=f(xi){\tan{{\left(\alpha\right)}}}={f{'}}{\left({x}_{{i}}\right)} (slope of tangent line) and tan(β)=m{\tan{{\left(\beta\right)}}}={m}.

Also, Di=Δxcos(α){D}_{{i}}=\frac{{\Delta{x}}}{{\cos{{\left(\alpha\right)}}}}, and Δu=Dicos(βα)=Di(cos(β)cos(α)+sin(α)sin(β))\Delta{u}={D}_{{i}}{\cos{{\left(\beta-\alpha\right)}}}={D}_{{i}}{\left({\cos{{\left(\beta\right)}}}{\cos{{\left(\alpha\right)}}}+{\sin{{\left(\alpha\right)}}}{\sin{{\left(\beta\right)}}}\right)}.

From this we have that Δu=Δxcos(α)(cos(β)cos(α)+sin(α)sin(β))=Δx(cos(β)+tan(α)sin(β))\Delta{u}=\frac{{\Delta{x}}}{{{\cos{{\left(\alpha\right)}}}}}{\left({\cos{{\left(\beta\right)}}}{\cos{{\left(\alpha\right)}}}+{\sin{{\left(\alpha\right)}}}{\sin{{\left(\beta\right)}}}\right)}=\Delta{x}{\left({\cos{{\left(\beta\right)}}}+{\tan{{\left(\alpha\right)}}}{\sin{{\left(\beta\right)}}}\right)}.

Now, we need to express sin(β){\sin{{\left(\beta\right)}}} and cos(β){\cos{{\left(\beta\right)}}} in terms of tan(β){\tan{{\left(\beta\right)}}}.

From identity tan2(β)+1=1cos2(β){{\tan}}^{{2}}{\left(\beta\right)}+{1}=\frac{{1}}{{{{\cos}}^{{2}}{\left(\beta\right)}}} we have that cos(β)=11+tan2(β)=11+m2{\cos{{\left(\beta\right)}}}=\sqrt{{\frac{{1}}{{{1}+{{\tan}}^{{2}}{\left(\beta\right)}}}}}=\sqrt{{\frac{{1}}{{{1}+{{m}}^{{2}}}}}}.

Since sin2(β)+cos2(β)=1{{\sin}}^{{2}}{\left(\beta\right)}+{{\cos}}^{{2}}{\left(\beta\right)}={1} then sin(β)=mm2+1{\sin{{\left(\beta\right)}}}=\frac{{m}}{\sqrt{{{{m}}^{{2}}+{1}}}}.

Therefore, Δu=Δx(1m2+1+f(xi)mm2+1)=Δx1+mf(xi)m2+1\Delta{u}=\Delta{x}{\left(\frac{{1}}{{\sqrt{{{{m}}^{{2}}+{1}}}}}+{f{'}}{\left({x}_{{i}}\right)}\frac{{m}}{\sqrt{{{{m}}^{{2}}+{1}}}}\right)}=\Delta{x}\frac{{{1}+{m}{f{'}}{\left({x}_{{i}}\right)}}}{{\sqrt{{{{m}}^{{2}}+{1}}}}}.

Now, we need to determine Li{L}_{{i}}.

It is fairly easy to do: Li=(f(xi)(mxi+b))cos(β)=f(xi)mxibm2+1{L}_{{i}}={\left({f{{\left({x}_{{i}}\right)}}}-{\left({m}{x}_{{i}}+{b}\right)}\right)}{\cos{{\left(\beta\right)}}}=\frac{{{f{{\left({x}_{{i}}\right)}}}-{m}{x}_{{i}}-{b}}}{{\sqrt{{{{m}}^{{2}}+{1}}}}}.

That's all. A=limni=1nLiΔu=f(xi)mxibm2+11+mf(xi)m2+1Δx=1m2+1limni=1n(f(xi)mxib)(1+mf(xi)){A}=\lim_{{{n}\to\infty}}{\sum_{{{i}={1}}}^{{n}}}{L}_{{i}}\Delta{u}=\frac{{{f{{\left({x}_{{i}}\right)}}}-{m}{x}_{{i}}-{b}}}{\sqrt{{{{m}}^{{2}}+{1}}}}\cdot\frac{{{1}+{m}{f{'}}{\left({x}_{{i}}\right)}}}{{\sqrt{{{{m}}^{{2}}+{1}}}}}\Delta{x}=\frac{{1}}{{{{m}}^{{2}}+{1}}}\lim_{{{n}\to\infty}}{\sum_{{{i}={1}}}^{{n}}}{\left({f{{\left({x}_{{i}}\right)}}}-{m}{x}_{{i}}-{b}\right)}{\left({1}+{m}{f{'}}{\left({x}_{{i}}\right)}\right)}.

This is limit of the Riemann sum, i.e. definite integral, so

Area of region R is A=1m2+1pq(f(x)mxb)(1+mf(x))dx{A}=\frac{{1}}{{{{m}}^{{2}}+{1}}}{\int_{{p}}^{{q}}}{\left({f{{\left({x}\right)}}}-{m}{x}-{b}\right)}{\left({1}+{m}{f{'}}{\left({x}\right)}\right)}{d}{x}.

Now, to find volume we use method of disks: we slice perpendicular to the line y=mx+b{y}={m}{x}+{b}: radius of disk is L=f(x)mxbm2+1{L}=\frac{{{f{{\left({x}\right)}}}-{m}{x}-{b}}}{\sqrt{{{{m}}^{{2}}+{1}}}}.

Thus, A(x)=πL2=π(f(x)mxbm2+1)2{A}{\left({x}\right)}=\pi{{L}}^{{2}}=\pi{{\left(\frac{{{f{{\left({x}\right)}}}-{m}{x}-{b}}}{{\sqrt{{{{m}}^{{2}}+{1}}}}}\right)}}^{{2}}.

Therefore, V=pqπL2du=pqπ(f(x)mxbm2+1)21+mf(x)m2+1dx{V}={\int_{{p}}^{{q}}}\pi{{L}}^{{2}}{d}{u}={\int_{{p}}^{{q}}}\pi{{\left(\frac{{{f{{\left({x}\right)}}}-{m}{x}-{b}}}{\sqrt{{{{m}}^{{2}}+{1}}}}\right)}}^{{2}}\frac{{{1}+{m}{f{'}}{\left({x}\right)}}}{\sqrt{{{{m}}^{{2}}+{1}}}}{d}{x}.

Volume of Solid of Revolution around Slant Line y=mx+b{y}={m}{x}+{b} is V=π(m2+1)32pq(f(x)mxb)2(1+mf(x))dx{V}=\frac{\pi}{{{\left({{m}}^{{2}}+{1}\right)}}^{{\frac{{3}}{{2}}}}}{\int_{{p}}^{{q}}}{{\left({f{{\left({x}\right)}}}-{m}{x}-{b}\right)}}^{{2}}{\left({1}+{m}{f{'}}{\left({x}\right)}\right)}{d}{x}.

Example. Find the area of region R{R} bounded by f(x)=x+sin(x){f{{\left({x}\right)}}}={x}+{\sin{{\left({x}\right)}}}, by the line y=x2{y}={x}-{2}, and by the perpendiculars to the line from P=(0,0){P}={\left({0},{0}\right)} and Q=(2π,2π){Q}={\left({2}\pi,{2}\pi\right)}. Find volume of the solid obtained by rotating the region R{R} about the line y=x2{y}={x}-{2}.volume of solid rotated about slant line

Here we have m=1{m}={1}, b=2{b}=-{2}, f(x)=x+sin(x){f{{\left({x}\right)}}}={x}+{\sin{{\left({x}\right)}}}, thus, f(x)=1+cos(x){f{'}}{\left({x}\right)}={1}+{\cos{{\left({x}\right)}}}.

Therefore, A=112+102π(x+sin(x)x+2)(1+1(1+cos(x)))dx={A}=\frac{{1}}{{{{1}}^{{2}}+{1}}}{\int_{{0}}^{{{2}\pi}}}{\left({x}+{\sin{{\left({x}\right)}}}-{x}+{2}\right)}{\left({1}+{1}\cdot{\left({1}+{\cos{{\left({x}\right)}}}\right)}\right)}{d}{x}=

=1202π(2+sin(x))(2+cos(x))dx==\frac{{1}}{{2}}{\int_{{0}}^{{{2}\pi}}}{\left({2}+{\sin{{\left({x}\right)}}}\right)}{\left({2}+{\cos{{\left({x}\right)}}}\right)}{d}{x}=

=1202π(4+2cos(x)+2sin(x)+sin(x)cos(x))dx==\frac{{1}}{{2}}{\int_{{0}}^{{{2}\pi}}}{\left({4}+{2}{\cos{{\left({x}\right)}}}+{2}{\sin{{\left({x}\right)}}}+{\sin{{\left({x}\right)}}}{\cos{{\left({x}\right)}}}\right)}{d}{x}=

=1202π(4+2cos(x)+2sin(x)+12sin(2x))dx==\frac{{1}}{{2}}{\int_{{0}}^{{{2}\pi}}}{\left({4}+{2}{\cos{{\left({x}\right)}}}+{2}{\sin{{\left({x}\right)}}}+\frac{{1}}{{2}}{\sin{{\left({2}{x}\right)}}}\right)}{d}{x}=

=12(4x+2sin(x)2cos(x)14cos(2x))02π=12(8π214+2+14)=4π=\frac{{1}}{{2}}{\left({4}{x}+{2}{\sin{{\left({x}\right)}}}-{2}{\cos{{\left({x}\right)}}}-\frac{{1}}{{4}}{\cos{{\left({2}{x}\right)}}}\right)}{{\mid}_{{0}}^{{{2}\pi}}}=\frac{{1}}{{2}}{\left({8}\pi-{2}-\frac{{1}}{{4}}+{2}+\frac{{1}}{{4}}\right)}={4}\pi.

And volume is

V=π(12+1)3202π(x+sin(x)x+2)2(1+1(1+cos(x)))dx=π802π(2+sin(x))2(2+cos(x))dx={V}=\frac{\pi}{{{\left({{1}}^{{2}}+{1}\right)}}^{{\frac{{3}}{{2}}}}}{\int_{{0}}^{{{2}\pi}}}{{\left({x}+{\sin{{\left({x}\right)}}}-{x}+{2}\right)}}^{{2}}{\left({1}+{1}\cdot{\left({1}+{\cos{{\left({x}\right)}}}\right)}\right)}{d}{x}=\frac{\pi}{\sqrt{{{8}}}}{\int_{{0}}^{{{2}\pi}}}{{\left({2}+{\sin{{\left({x}\right)}}}\right)}}^{{2}}{\left({2}+{\cos{{\left({x}\right)}}}\right)}{d}{x}=

=π802π(4+4sin(x)+sin2(x))(2+cos(x))dx==\frac{\pi}{\sqrt{{{8}}}}{\int_{{0}}^{{{2}\pi}}}{\left({4}+{4}{\sin{{\left({x}\right)}}}+{{\sin}}^{{2}}{\left({x}\right)}\right)}{\left({2}+{\cos{{\left({x}\right)}}}\right)}{d}{x}=

=π802π(8+4cos(x)+8sin(x)+4sin(x)cos(x)+2sin2(x)+sin2(x)cos(x))dx=\frac{\pi}{\sqrt{{{8}}}}{\int_{{0}}^{{{2}\pi}}}{\left({8}+{4}{\cos{{\left({x}\right)}}}+{8}{\sin{{\left({x}\right)}}}+{4}{\sin{{\left({x}\right)}}}{\cos{{\left({x}\right)}}}+{2}{{\sin}}^{{2}}{\left({x}\right)}+{{\sin}}^{{2}}{\left({x}\right)}{\cos{{\left({x}\right)}}}\right)}{d}{x}

Now we use double angle formulas and integral can be rewritten as

=π802π(8+4cos(x)+8sin(x)+2sin(2x)+1cos(2x)+sin2(x)cos(x))dx==\frac{\pi}{\sqrt{{{8}}}}{\int_{{0}}^{{{2}\pi}}}{\left({8}+{4}{\cos{{\left({x}\right)}}}+{8}{\sin{{\left({x}\right)}}}+{2}{\sin{{\left({2}{x}\right)}}}+{1}-{\cos{{\left({2}{x}\right)}}}+{{\sin}}^{{2}}{\left({x}\right)}{\cos{{\left({x}\right)}}}\right)}{d}{x}=

=π802π(9+4cos(x)+8sin(x)+2sin(2x)cos(2x)+sin2(x)cos(x))dx==\frac{\pi}{\sqrt{{{8}}}}{\int_{{0}}^{{{2}\pi}}}{\left({9}+{4}{\cos{{\left({x}\right)}}}+{8}{\sin{{\left({x}\right)}}}+{2}{\sin{{\left({2}{x}\right)}}}-{\cos{{\left({2}{x}\right)}}}+{{\sin}}^{{2}}{\left({x}\right)}{\cos{{\left({x}\right)}}}\right)}{d}{x}=

=π8(9x+4sin(x)8cos(x)cos(2x)12sin(2x)+13sin3(x))02π==\frac{\pi}{\sqrt{{{8}}}}{\left({9}{x}+{4}{\sin{{\left({x}\right)}}}-{8}{\cos{{\left({x}\right)}}}-{\cos{{\left({2}{x}\right)}}}-\frac{{1}}{{2}}{\sin{{\left({2}{x}\right)}}}+\frac{{1}}{{3}}{{\sin}}^{{3}}{\left({x}\right)}\right)}{{\mid}_{{0}}^{{{2}\pi}}}=

=π8(18π81+8+1)=π818π=9π22=\frac{\pi}{\sqrt{{{8}}}}{\left({18}\pi-{8}-{1}+{8}+{1}\right)}=\frac{\pi}{\sqrt{{{8}}}}\cdot{18}\pi=\frac{{{9}{\pi}^{{2}}}}{\sqrt{{{2}}}}.

Note, how we used substitution u=sin(x){u}={\sin{{\left({x}\right)}}} for integral sin2(x)cos(x)dx\int{{\sin}}^{{2}}{\left({x}\right)}{\cos{{\left({x}\right)}}}{d}{x} to obtain that sin2(x)cos(x)dx=13sin3(x)dx\int{{\sin}}^{{2}}{\left({x}\right)}{\cos{{\left({x}\right)}}}{d}{x}=\frac{{1}}{{3}}{{\sin}}^{{3}}{\left({x}\right)}{d}{x}.