Consider integral ∫ 4 x − 6 x 2 − 3 x + 2 d x \int\frac{{{4}{x}-{6}}}{{{{x}}^{{2}}-{3}{x}+{2}}}{d}{x} ∫ x 2 − 3 x + 2 4 x − 6 d x .
This integral can be easily evaluated using substitution u = x 2 − 3 x + 2 {u}={{x}}^{{2}}-{3}{x}+{2} u = x 2 − 3 x + 2 .
Indeed, d u = ( 2 x − 3 ) d x {d}{u}={\left({2}{x}-{3}\right)}{d}{x} d u = ( 2 x − 3 ) d x . So, integral becoms 2 ∫ d u u = 2 ln ∣ u ∣ + C = 2 ln ∣ x 2 − 3 x + 2 ∣ + C {2}\int\frac{{{d}{u}}}{{u}}={2}{\ln}{\left|{u}\right|}+{C}={2}{\ln}{\left|{{x}}^{{2}}-{3}{x}+{2}\right|}+{C} 2 ∫ u d u = 2 ln ∣ u ∣ + C = 2 ln ∣ ∣ x 2 − 3 x + 2 ∣ ∣ + C .
This integral is easy, because in numerator there is exact derivative of denominator (or a constant multiply). But in many cases there is no derivative in numerator. For example, how to integrate ∫ 1 x 2 − 3 x + 2 d x \int\frac{{1}}{{{{x}}^{{2}}-{3}{x}+{2}}}{d}{x} ∫ x 2 − 3 x + 2 1 d x ?
Example 1 . Integrate ∫ d x x 2 − 3 x + 2 \int\frac{{{d}{x}}}{{{{x}}^{{2}}-{3}{x}+{2}}} ∫ x 2 − 3 x + 2 d x .
Note, that ( x 2 − 3 x + 2 ) = ( x − 2 ) ( x − 1 ) {\left({{x}}^{{2}}-{3}{x}+{2}\right)}={\left({x}-{2}\right)}{\left({x}-{1}\right)} ( x 2 − 3 x + 2 ) = ( x − 2 ) ( x − 1 ) .
So, 1 x 2 − 3 x + 2 = 1 ( x − 2 ) ( x − 1 ) \frac{{1}}{{{{x}}^{{2}}-{3}{x}+{2}}}=\frac{{1}}{{{\left({x}-{2}\right)}{\left({x}-{1}\right)}}} x 2 − 3 x + 2 1 = ( x − 2 ) ( x − 1 ) 1 .
Now, suppose you can decompose it as A x − 2 + B x − 1 \frac{{A}}{{{x}-{2}}}+\frac{{B}}{{{x}-{1}}} x − 2 A + x − 1 B . We need to determine constants A and B.
So, A x − 2 + B x − 1 = A ( x − 1 ) + B ( x − 2 ) ( x − 2 ) ( x − 1 ) \frac{{A}}{{{x}-{2}}}+\frac{{B}}{{{x}-{1}}}=\frac{{{A}{\left({x}-{1}\right)}+{B}{\left({x}-{2}\right)}}}{{{\left({x}-{2}\right)}{\left({x}-{1}\right)}}} x − 2 A + x − 1 B = ( x − 2 ) ( x − 1 ) A ( x − 1 ) + B ( x − 2 ) .
And this must be equal for any x {x} x to 1 ( x − 2 ) ( x − 1 ) \frac{{1}}{{{\left({x}-{2}\right)}{\left({x}-{1}\right)}}} ( x − 2 ) ( x − 1 ) 1 . Denominators are equal, so we require equality of numerators:
Thus, A ( x − 1 ) + B ( x − 2 ) = 1 {A}{\left({x}-{1}\right)}+{B}{\left({x}-{2}\right)}={1} A ( x − 1 ) + B ( x − 2 ) = 1 .
At this point we have one of two ways to proceed. One way will always work, but is often requires more work. The other, while it won’t always work, is often quicker when it does work.
First way that always works . We can rewrite equation as ( A + B ) x + ( − A − 2 B ) = 0 ⋅ x + 1 {\left({A}+{B}\right)}{x}+{\left(-{A}-{2}{B}\right)}={0}\cdot{x}+{1} ( A + B ) x + ( − A − 2 B ) = 0 ⋅ x + 1 .
Equating coefficients near like terms gives:
{ A + B = 0 − A − 2 B = 1 {\left\{\begin{array}{c}{A}+{B}={0}\\-{A}-{2}{B}={1}\\ \end{array}\right.} { A + B = 0 − A − 2 B = 1 .
Adding two equations gives that − B = 1 -{B}={1} − B = 1 or B = − 1 {B}=-{1} B = − 1 . From first equation A = − B = − ( − 1 ) = 1 {A}=-{B}=-{\left(-{1}\right)}={1} A = − B = − ( − 1 ) = 1 .
Second way that will not always work . Note that A ( x − 1 ) + B ( x − 2 ) = 1 {A}{\left({x}-{1}\right)}+{B}{\left({x}-{2}\right)}={1} A ( x − 1 ) + B ( x − 2 ) = 1 must hold for any x . {x}. x . Therefore, choosing appropriate x {x} x 's we got the unknown constants to quickly drop out.
If x = 1 {x}={1} x = 1 then x − 1 = 0 {x}-{1}={0} x − 1 = 0 and A ⋅ ( 1 − 1 ) + B ( 1 − 2 ) = 1 {A}\cdot{\left({1}-{1}\right)}+{B}{\left({1}-{2}\right)}={1} A ⋅ ( 1 − 1 ) + B ( 1 − 2 ) = 1 ,so B = − 1 {B}=-{1} B = − 1 .
If x = 2 {x}={2} x = 2 then x − 2 = 0 {x}-{2}={0} x − 2 = 0 and A ⋅ ( 2 − 1 ) + B ( 2 − 2 ) = 1 {A}\cdot{\left({2}-{1}\right)}+{B}{\left({2}-{2}\right)}={1} A ⋅ ( 2 − 1 ) + B ( 2 − 2 ) = 1 , so A = 1 {A}={1} A = 1 .
Therefore 1 ( x − 2 ) ( x − 1 ) = 1 x − 2 − 1 x − 1 \frac{{1}}{{{\left({x}-{2}\right)}{\left({x}-{1}\right)}}}=\frac{{1}}{{{x}-{2}}}-\frac{{1}}{{{x}-{1}}} ( x − 2 ) ( x − 1 ) 1 = x − 2 1 − x − 1 1 .
Finally, ∫ d x x 2 − 3 x + 2 d x = ∫ ( 1 x − 2 − 1 x − 1 ) d x = ln ∣ x − 2 ∣ − ln ∣ x − 1 ∣ + C \int\frac{{{d}{x}}}{{{{x}}^{{2}}-{3}{x}+{2}}}{d}{x}=\int{\left(\frac{{1}}{{{x}-{2}}}-\frac{{1}}{{{x}-{1}}}\right)}{d}{x}={\ln}{\left|{x}-{2}\right|}-{\ln}{\left|{x}-{1}\right|}+{C} ∫ x 2 − 3 x + 2 d x d x = ∫ ( x − 2 1 − x − 1 1 ) d x = ln ∣ x − 2 ∣ − ln ∣ x − 1 ∣ + C .
The process described in example 1 is called partial fraction decomposition.
Definition. Partial Fraction Decomposition is a process of taking a rational expression and decomposing it into simpler rational expressions that we can add or subtract to get the original rational expression. Many integrals are solved quickly with performing partial fraction decomposition.
Partial fractions can only be done if the degree of the numerator is strictly less than the degree of the denominator. If this doesn't hold, we first need to perform long division.
Example 2 . Evaluate ∫ x 3 − 3 x 2 + 2 x + 4 x 2 − 3 x + 2 d x \int\frac{{{{x}}^{{3}}-{3}{{x}}^{{2}}+{2}{x}+{4}}}{{{{x}}^{{2}}-{3}{x}+{2}}}{d}{x} ∫ x 2 − 3 x + 2 x 3 − 3 x 2 + 2 x + 4 d x .
Here degree of numerator is greater than degree of denominator, so perform long division first:
∫ x 3 − 3 x 2 + 2 x + 4 x 2 − 3 x + 2 d x = ∫ x ( x 2 − 3 x + 2 ) + 4 x 2 − 3 x + 2 d x = ∫ ( x + 4 1 x 2 − 3 x + 2 ) d x = \int\frac{{{{x}}^{{3}}-{3}{{x}}^{{2}}+{2}{x}+{4}}}{{{{x}}^{{2}}-{3}{x}+{2}}}{d}{x}=\int\frac{{{x}{\left({{x}}^{{2}}-{3}{x}+{2}\right)}+{4}}}{{{{x}}^{{2}}-{3}{x}+{2}}}{d}{x}=\int{\left({x}+{4}\frac{{1}}{{{{x}}^{{2}}-{3}{x}+{2}}}\right)}{d}{x}= ∫ x 2 − 3 x + 2 x 3 − 3 x 2 + 2 x + 4 d x = ∫ x 2 − 3 x + 2 x ( x 2 − 3 x + 2 ) + 4 d x = ∫ ( x + 4 x 2 − 3 x + 2 1 ) d x =
= ∫ ( x + 4 x − 2 − 4 x − 1 ) d x = 1 2 x 2 + 4 ln ∣ x − 2 ∣ − 4 ln ∣ x − 1 ∣ + C =\int{\left({x}+\frac{{4}}{{{x}-{2}}}-\frac{{4}}{{{x}-{1}}}\right)}{d}{x}=\frac{{1}}{{2}}{{x}}^{{2}}+{4}{\ln}{\left|{x}-{2}\right|}-{4}{\ln}{\left|{x}-{1}\right|}+{C} = ∫ ( x + x − 2 4 − x − 1 4 ) d x = 2 1 x 2 + 4 ln ∣ x − 2 ∣ − 4 ln ∣ x − 1 ∣ + C .
In general if you have in denominator ( a n x n + a n − 1 x n − 1 + … + a 0 ) k {{\left({a}_{{n}}{{x}}^{{n}}+{a}_{{{n}-{1}}}{{x}}^{{{n}-{1}}}+\ldots+{a}_{{0}}\right)}}^{{k}} ( a n x n + a n − 1 x n − 1 + … + a 0 ) k then corresponding term in partial fraction decomposition is A n − 1 x n − 1 + A n − 2 x n − 2 + … + A 0 a n x n + a n − 1 x n − 1 + … + a 0 + A n − 1 x n − 1 + A n − 2 x n − 2 + … + A 0 ( a n x n + a n − 1 x n − 1 + … + a 0 ) 2 + … + \frac{{{A}_{{{n}-{1}}}{{x}}^{{{n}-{1}}}+{A}_{{{n}-{2}}}{{x}}^{{{n}-{2}}}+\ldots+{A}_{{0}}}}{{{a}_{{n}}{{x}}^{{n}}+{a}_{{{n}-{1}}}{{x}}^{{{n}-{1}}}+\ldots+{a}_{{0}}}}+\frac{{{A}_{{{n}-{1}}}{{x}}^{{{n}-{1}}}+{A}_{{{n}-{2}}}{{x}}^{{{n}-{2}}}+\ldots+{A}_{{0}}}}{{{\left({a}_{{n}}{{x}}^{{n}}+{a}_{{{n}-{1}}}{{x}}^{{{n}-{1}}}+\ldots+{a}_{{0}}\right)}}^{{2}}}+\ldots+ a n x n + a n − 1 x n − 1 + … + a 0 A n − 1 x n − 1 + A n − 2 x n − 2 + … + A 0 + ( a n x n + a n − 1 x n − 1 + … + a 0 ) 2 A n − 1 x n − 1 + A n − 2 x n − 2 + … + A 0 + … +
+ A n − 1 x n − 1 + A n − 2 x n − 2 + … + A 0 ( a n x n + a n − 1 x n − 1 + … + a 0 ) k +\frac{{{A}_{{{n}-{1}}}{{x}}^{{{n}-{1}}}+{A}_{{{n}-{2}}}{{x}}^{{{n}-{2}}}+\ldots+{A}_{{0}}}}{{{\left({a}_{{n}}{{x}}^{{n}}+{a}_{{{n}-{1}}}{{x}}^{{{n}-{1}}}+\ldots+{a}_{{0}}\right)}}^{{k}}} + ( a n x n + a n − 1 x n − 1 + … + a 0 ) k A n − 1 x n − 1 + A n − 2 x n − 2 + … + A 0 .
In particular,
a x + b → A a x + b {a}{x}+{b}\to\frac{{A}}{{{a}{x}+{b}}} a x + b → a x + b A a x 2 + b x + c → A x + B a x 2 + b x + c {a}{{x}}^{{2}}+{b}{x}+{c}\to\frac{{{A}{x}+{B}}}{{{a}{{x}}^{{2}}+{b}{x}+{c}}} a x 2 + b x + c → a x 2 + b x + c A x + B ( a x + b ) 2 → A a x + b + B ( a x + b ) 2 {{\left({a}{x}+{b}\right)}}^{{2}}\to\frac{{A}}{{{a}{x}+{b}}}+\frac{{B}}{{{\left({a}{x}+{b}\right)}}^{{2}}} ( a x + b ) 2 → a x + b A + ( a x + b ) 2 B ( a x 2 + b x + c ) 2 → A x + B a x 2 + b x + c + C x + D ( a x 2 + b x + c ) 2 {{\left({a}{{x}}^{{2}}+{b}{x}+{c}\right)}}^{{2}}\to\frac{{{A}{x}+{B}}}{{{a}{{x}}^{{2}}+{b}{x}+{c}}}+\frac{{{C}{x}+{D}}}{{{\left({a}{{x}}^{{2}}+{b}{x}+{c}\right)}}^{{2}}} ( a x 2 + b x + c ) 2 → a x 2 + b x + c A x + B + ( a x 2 + b x + c ) 2 C x + D . Often there are quadratic terms that can't be reduced (discriminant is negative). In this case you should complete a square.
Example 3 . Find ∫ 1 x 2 − 6 x + 10 d x \int\frac{{1}}{{{{x}}^{{2}}-{6}{x}+{10}}}{d}{x} ∫ x 2 − 6 x + 10 1 d x .
x 2 − 6 x + 10 {{x}}^{{2}}-{6}{x}+{10} x 2 − 6 x + 10 cannot be factored, so complete a square: x 2 − 6 x + 10 = x 2 − 6 x + 9 + 1 = ( x − 3 ) 2 + 1 {{x}}^{{2}}-{6}{x}+{10}={{x}}^{{2}}-{6}{x}+{9}+{1}={{\left({x}-{3}\right)}}^{{2}}+{1} x 2 − 6 x + 10 = x 2 − 6 x + 9 + 1 = ( x − 3 ) 2 + 1 .
∫ 1 ( x − 3 ) 2 + 1 d x = arctan ( x − 3 ) + C \int\frac{{1}}{{{{\left({x}-{3}\right)}}^{{2}}+{1}}}{d}{x}={\operatorname{arctan}{{\left({x}-{3}\right)}}}+{C} ∫ ( x − 3 ) 2 + 1 1 d x = arctan ( x − 3 ) + C .
In general you will need following integrals:
∫ 1 a x + b d x = 1 a ln ∣ a x + b ∣ + C \int\frac{{1}}{{{a}{x}+{b}}}{d}{x}=\frac{{1}}{{a}}{\ln}{\left|{a}{x}+{b}\right|}+{C} ∫ a x + b 1 d x = a 1 ln ∣ a x + b ∣ + C ∫ x x 2 ± a d x = 1 2 ln ∣ x 2 ± a ∣ + C \int\frac{{x}}{{{{x}}^{{2}}\pm{a}}}{d}{x}=\frac{{1}}{{2}}{\ln}{\left|{{x}}^{{2}}\pm{a}\right|}+{C} ∫ x 2 ± a x d x = 2 1 ln ∣ ∣ x 2 ± a ∣ ∣ + C ∫ 1 ( x + a ) 2 + b 2 d x = 1 b tan − 1 ( x + a b ) + C \int\frac{{1}}{{{{\left({x}+{a}\right)}}^{{2}}+{{b}}^{{2}}}}{d}{x}=\frac{{1}}{{b}}{{\tan}}^{{-{1}}}{\left(\frac{{{x}+{a}}}{{b}}\right)}+{C} ∫ ( x + a ) 2 + b 2 1 d x = b 1 tan − 1 ( b x + a ) + C ∫ 1 ( a x + b ) 2 d x = − 1 a 1 a x + b + C \int\frac{{1}}{{{\left({a}{x}+{b}\right)}}^{{2}}}{d}{x}=-\frac{{1}}{{a}}\frac{{1}}{{{a}{x}+{b}}}+{C} ∫ ( a x + b ) 2 1 d x = − a 1 a x + b 1 + C Example 4 . Integrate ∫ 2 x 2 − x + 4 x 3 + 4 x d x \int\frac{{{2}{{x}}^{{2}}-{x}+{4}}}{{{{x}}^{{3}}+{4}{x}}}{d}{x} ∫ x 3 + 4 x 2 x 2 − x + 4 d x
Since x 3 + 4 x = x ( x 2 + 4 ) {{x}}^{{3}}+{4}{x}={x}{\left({{x}}^{{2}}+{4}\right)} x 3 + 4 x = x ( x 2 + 4 ) then partial fraction decomposition is 2 x 2 − x + 4 x ( x 2 + 4 ) = A x + B x + C x 2 + 4 \frac{{{2}{{x}}^{{2}}-{x}+{4}}}{{{x}{\left({{x}}^{{2}}+{4}\right)}}}=\frac{{A}}{{x}}+\frac{{{B}{x}+{C}}}{{{{x}}^{{2}}+{4}}} x ( x 2 + 4 ) 2 x 2 − x + 4 = x A + x 2 + 4 B x + C .
Multiplying by x ( x 2 + 4 ) {x}{\left({{x}}^{{2}}+{4}\right)} x ( x 2 + 4 ) we have that ( 2 x 2 − x + 4 ) = A ( x 2 + 4 ) + x ( B x + C ) = ( A + B ) x 2 + C x + 4 A {\left({2}{{x}}^{{2}}-{x}+{4}\right)}={A}{\left({{x}}^{{2}}+{4}\right)}+{x}{\left({B}{x}+{C}\right)}={\left({A}+{B}\right)}{{x}}^{{2}}+{C}{x}+{4}{A} ( 2 x 2 − x + 4 ) = A ( x 2 + 4 ) + x ( B x + C ) = ( A + B ) x 2 + C x + 4 A .
Equating coefficients near like terms yields A + B = 2 {A}+{B}={2} A + B = 2 , C = − 1 {C}=-{1} C = − 1 and 4 A = 4 {4}{A}={4} 4 A = 4 .
Thus, A = 1 {A}={1} A = 1 , B = 1 {B}={1} B = 1 , C = − 1 {C}=-{1} C = − 1 .
∫ 2 x 2 − x + 4 x 3 + 4 x d x = ∫ ( 1 x + x − 1 x 2 + 4 ) d x = ∫ ( 1 x + x x 2 + 4 − 1 x 2 + 4 ) d x = \int\frac{{{2}{{x}}^{{2}}-{x}+{4}}}{{{{x}}^{{3}}+{4}{x}}}{d}{x}=\int{\left(\frac{{1}}{{x}}+\frac{{{x}-{1}}}{{{{x}}^{{2}}+{4}}}\right)}{d}{x}=\int{\left(\frac{{1}}{{x}}+\frac{{x}}{{{{x}}^{{2}}+{4}}}-\frac{{1}}{{{{x}}^{{2}}+{4}}}\right)}{d}{x}= ∫ x 3 + 4 x 2 x 2 − x + 4 d x = ∫ ( x 1 + x 2 + 4 x − 1 ) d x = ∫ ( x 1 + x 2 + 4 x − x 2 + 4 1 ) d x =
= ln ∣ x ∣ + 1 2 ln ∣ x 2 + 4 ∣ − 1 2 tan − 1 ( x 2 ) + C ={\ln}{\left|{x}\right|}+\frac{{1}}{{2}}{\ln}{\left|{{x}}^{{2}}+{4}\right|}-\frac{{1}}{{2}}{{\tan}}^{{-{1}}}{\left(\frac{{x}}{{2}}\right)}+{C} = ln ∣ x ∣ + 2 1 ln ∣ ∣ x 2 + 4 ∣ ∣ − 2 1 tan − 1 ( 2 x ) + C .
Example 5 . Evaluate ∫ 2 x 3 − 11 x 2 − 2 x + 2 2 x 2 + x − 1 d x \int\frac{{{2}{{x}}^{{3}}-{11}{{x}}^{{2}}-{2}{x}+{2}}}{{{2}{{x}}^{{2}}+{x}-{1}}}{d}{x} ∫ 2 x 2 + x − 1 2 x 3 − 11 x 2 − 2 x + 2 d x .
Degree of numerator is greater than degree of denominator, so we must first perform long division.
2 x 3 − 11 x 2 − 2 x + 2 2 x 2 + x − 1 = x − 6 + 5 x − 4 2 x 2 + x − 2 = x − 6 + 5 x − 4 ( 2 x − 1 ) ( x + 1 ) \frac{{{2}{{x}}^{{3}}-{11}{{x}}^{{2}}-{2}{x}+{2}}}{{{2}{{x}}^{{2}}+{x}-{1}}}={x}-{6}+\frac{{{5}{x}-{4}}}{{{2}{{x}}^{{2}}+{x}-{2}}}={x}-{6}+\frac{{{5}{x}-{4}}}{{{\left({2}{x}-{1}\right)}{\left({x}+{1}\right)}}} 2 x 2 + x − 1 2 x 3 − 11 x 2 − 2 x + 2 = x − 6 + 2 x 2 + x − 2 5 x − 4 = x − 6 + ( 2 x − 1 ) ( x + 1 ) 5 x − 4 .
Partial fraction decomposition is 5 x − 4 ( 2 x − 1 ) ( x + 1 ) = A 2 x − 1 + B x + 1 \frac{{{5}{x}-{4}}}{{{\left({2}{x}-{1}\right)}{\left({x}+{1}\right)}}}=\frac{{A}}{{{2}{x}-{1}}}+\frac{{B}}{{{x}+{1}}} ( 2 x − 1 ) ( x + 1 ) 5 x − 4 = 2 x − 1 A + x + 1 B .
Multiplying by ( 2 x − 1 ) ( x + 1 ) {\left({2}{x}-{1}\right)}{\left({x}+{1}\right)} ( 2 x − 1 ) ( x + 1 ) gives the following: 5 x − 4 = A ( x + 1 ) + B ( 2 x − 1 ) {5}{x}-{4}={A}{\left({x}+{1}\right)}+{B}{\left({2}{x}-{1}\right)} 5 x − 4 = A ( x + 1 ) + B ( 2 x − 1 ) .
If x = − 1 {x}=-{1} x = − 1 then 5 ⋅ ( − 1 ) − 4 = A ( − 1 + 1 ) + B ( 2 ⋅ ( − 1 ) − 1 ) {5}\cdot{\left(-{1}\right)}-{4}={A}{\left(-{1}+{1}\right)}+{B}{\left({2}\cdot{\left(-{1}\right)}-{1}\right)} 5 ⋅ ( − 1 ) − 4 = A ( − 1 + 1 ) + B ( 2 ⋅ ( − 1 ) − 1 ) or B = 3 {B}={3} B = 3 .
If x = 1 2 {x}=\frac{{1}}{{2}} x = 2 1 then 5 ⋅ 1 2 − 4 = A ( 1 2 + 1 ) + B ( 2 ⋅ 1 2 − 1 ) {5}\cdot\frac{{1}}{{2}}-{4}={A}{\left(\frac{{1}}{{2}}+{1}\right)}+{B}{\left({2}\cdot\frac{{1}}{{2}}-{1}\right)} 5 ⋅ 2 1 − 4 = A ( 2 1 + 1 ) + B ( 2 ⋅ 2 1 − 1 ) or A = − 1 {A}=-{1} A = − 1 .
So, 5 x − 4 ( 2 x − 1 ) ( x + 1 ) = − 1 2 x − 1 + 3 x + 1 \frac{{{5}{x}-{4}}}{{{\left({2}{x}-{1}\right)}{\left({x}+{1}\right)}}}=-\frac{{1}}{{{2}{x}-{1}}}+\frac{{3}}{{{x}+{1}}} ( 2 x − 1 ) ( x + 1 ) 5 x − 4 = − 2 x − 1 1 + x + 1 3 .
Finally, ∫ 2 x 3 − 11 x 2 − 2 x + 2 2 x 2 + x − 1 d x = ∫ ( x − 6 − 1 2 x − 1 + 3 x + 1 ) d x = \int\frac{{{2}{{x}}^{{3}}-{11}{{x}}^{{2}}-{2}{x}+{2}}}{{{2}{{x}}^{{2}}+{x}-{1}}}{d}{x}=\int{\left({x}-{6}-\frac{{1}}{{{2}{x}-{1}}}+\frac{{3}}{{{x}+{1}}}\right)}{d}{x}= ∫ 2 x 2 + x − 1 2 x 3 − 11 x 2 − 2 x + 2 d x = ∫ ( x − 6 − 2 x − 1 1 + x + 1 3 ) d x =
= 1 2 x 2 − 6 x − 1 2 ln ∣ 2 x − 1 ∣ + 3 ln ∣ x + 1 ∣ + C =\frac{{1}}{{2}}{{x}}^{{2}}-{6}{x}-\frac{{1}}{{2}}{\ln}{\left|{2}{x}-{1}\right|}+{3}{\ln}{\left|{x}+{1}\right|}+{C} = 2 1 x 2 − 6 x − 2 1 ln ∣ 2 x − 1 ∣ + 3 ln ∣ x + 1 ∣ + C .
Example 6 . Evaluate ∫ 15 x 2 − 29 x + 15 x ( x − 3 ) ( 4 x − 5 ) d x \int\frac{{{15}{{x}}^{{2}}-{29}{x}+{15}}}{{{x}{\left({x}-{3}\right)}{\left({4}{x}-{5}\right)}}}{d}{x} ∫ x ( x − 3 ) ( 4 x − 5 ) 15 x 2 − 29 x + 15 d x .
Partial fraction decomposition is 15 x 2 − 29 x + 15 x ( x − 3 ) ( 4 x − 5 ) = A x + B x − 3 + C 4 x − 5 \frac{{{15}{{x}}^{{2}}-{29}{x}+{15}}}{{{x}{\left({x}-{3}\right)}{\left({4}{x}-{5}\right)}}}=\frac{{A}}{{x}}+\frac{{B}}{{{x}-{3}}}+\frac{{C}}{{{4}{x}-{5}}} x ( x − 3 ) ( 4 x − 5 ) 15 x 2 − 29 x + 15 = x A + x − 3 B + 4 x − 5 C .
Multiplying by x ( x − 3 ) ( 4 x − 5 ) {x}{\left({x}-{3}\right)}{\left({4}{x}-{5}\right)} x ( x − 3 ) ( 4 x − 5 ) yields 15 x 2 − 29 x + 15 = A ( x − 3 ) ( 4 x − 5 ) + B x ( 4 x − 5 ) + C x ( x − 3 ) . {15}{{x}}^{{2}}-{29}{x}+{15}={A}{\left({x}-{3}\right)}{\left({4}{x}-{5}\right)}+{B}{x}{\left({4}{x}-{5}\right)}+{C}{x}{\left({x}-{3}\right)}. 15 x 2 − 29 x + 15 = A ( x − 3 ) ( 4 x − 5 ) + B x ( 4 x − 5 ) + C x ( x − 3 ) .
If x = 0 {x}={0} x = 0 then 15 ⋅ 0 2 − 29 ⋅ 0 + 15 = A ( 0 − 3 ) ( 4 ⋅ 0 − 5 ) + B ⋅ 0 ⋅ ( 4 ⋅ 0 − 5 ) + C ⋅ 0 ⋅ ( 0 − 3 ) {15}\cdot{{0}}^{{2}}-{29}\cdot{0}+{15}={A}{\left({0}-{3}\right)}{\left({4}\cdot{0}-{5}\right)}+{B}\cdot{0}\cdot{\left({4}\cdot{0}-{5}\right)}+{C}\cdot{0}\cdot{\left({0}-{3}\right)} 15 ⋅ 0 2 − 29 ⋅ 0 + 15 = A ( 0 − 3 ) ( 4 ⋅ 0 − 5 ) + B ⋅ 0 ⋅ ( 4 ⋅ 0 − 5 ) + C ⋅ 0 ⋅ ( 0 − 3 ) or A = 1 {A}={1} A = 1 .
If x = 3 {x}={3} x = 3 then 15 ⋅ 3 2 − 29 ⋅ 3 + 15 = A ( 3 − 3 ) ( 4 ⋅ 3 − 5 ) + B ⋅ 3 ⋅ ( 4 ⋅ 3 − 5 ) + C ⋅ 3 ⋅ ( 3 − 3 ) {15}\cdot{{3}}^{{2}}-{29}\cdot{3}+{15}={A}{\left({3}-{3}\right)}{\left({4}\cdot{3}-{5}\right)}+{B}\cdot{3}\cdot{\left({4}\cdot{3}-{5}\right)}+{C}\cdot{3}\cdot{\left({3}-{3}\right)} 15 ⋅ 3 2 − 29 ⋅ 3 + 15 = A ( 3 − 3 ) ( 4 ⋅ 3 − 5 ) + B ⋅ 3 ⋅ ( 4 ⋅ 3 − 5 ) + C ⋅ 3 ⋅ ( 3 − 3 ) or B = 3 {B}={3} B = 3 .
If x = 5 4 {x}=\frac{{5}}{{4}} x = 4 5 then 15 ⋅ ( 5 4 ) 2 − 29 ⋅ ( 5 4 ) + 15 = {15}\cdot{{\left(\frac{{5}}{{4}}\right)}}^{{2}}-{29}\cdot{\left(\frac{{5}}{{4}}\right)}+{15}= 15 ⋅ ( 4 5 ) 2 − 29 ⋅ ( 4 5 ) + 15 =
= A ( ( 5 4 ) − 3 ) ( 4 ⋅ ( 5 4 ) − 5 ) + B ⋅ ( 5 4 ) ⋅ ( 4 ⋅ ( 5 4 ) − 5 ) + C ⋅ ( 5 4 ) ⋅ ( ( 5 4 ) − 3 ) ={A}{\left({\left(\frac{{5}}{{4}}\right)}-{3}\right)}{\left({4}\cdot{\left(\frac{{5}}{{4}}\right)}-{5}\right)}+{B}\cdot{\left(\frac{{5}}{{4}}\right)}\cdot{\left({4}\cdot{\left(\frac{{5}}{{4}}\right)}-{5}\right)}+{C}\cdot{\left(\frac{{5}}{{4}}\right)}\cdot{\left({\left(\frac{{5}}{{4}}\right)}-{3}\right)} = A ( ( 4 5 ) − 3 ) ( 4 ⋅ ( 4 5 ) − 5 ) + B ⋅ ( 4 5 ) ⋅ ( 4 ⋅ ( 4 5 ) − 5 ) + C ⋅ ( 4 5 ) ⋅ ( ( 4 5 ) − 3 ) or C = − 1 {C}=-{1} C = − 1 .
So, 15 x 2 − 29 + 15 x ( x − 3 ) ( 4 x − 5 ) = 1 x + 3 x − 3 − 1 4 x − 5 \frac{{{15}{{x}}^{{2}}-{29}+{15}}}{{{x}{\left({x}-{3}\right)}{\left({4}{x}-{5}\right)}}}=\frac{{1}}{{x}}+\frac{{3}}{{{x}-{3}}}-\frac{{1}}{{{4}{x}-{5}}} x ( x − 3 ) ( 4 x − 5 ) 15 x 2 − 29 + 15 = x 1 + x − 3 3 − 4 x − 5 1 .
Thus, required integral is ∫ ( 1 x + 3 x − 3 + 1 4 x − 5 ) d x = ln ∣ x ∣ + ln ∣ x − 3 ∣ + 1 4 ln ∣ 4 x − 5 ∣ + C \int{\left(\frac{{1}}{{x}}+\frac{{3}}{{{x}-{3}}}+\frac{{1}}{{{4}{x}-{5}}}\right)}{d}{x}={\ln}{\left|{x}\right|}+{\ln}{\left|{x}-{3}\right|}+\frac{{1}}{{4}}{\ln}{\left|{4}{x}-{5}\right|}+{C} ∫ ( x 1 + x − 3 3 + 4 x − 5 1 ) d x = ln ∣ x ∣ + ln ∣ x − 3 ∣ + 4 1 ln ∣ 4 x − 5 ∣ + C .
Example 7 . Integrate ∫ x ( x + 2 ) 2 ( x − 1 ) d x \int\frac{{x}}{{{{\left({x}+{2}\right)}}^{{2}}{\left({x}-{1}\right)}{d}{x}}} ∫ ( x + 2 ) 2 ( x − 1 ) d x x .
Partial fraction decomposition is x ( x + 2 ) 2 ( x − 1 ) = A x + 2 + B ( x + 2 ) 2 + C x − 1 \frac{{x}}{{{{\left({x}+{2}\right)}}^{{2}}{\left({x}-{1}\right)}}}=\frac{{A}}{{{x}+{2}}}+\frac{{B}}{{{\left({x}+{2}\right)}}^{{2}}}+\frac{{C}}{{{x}-{1}}} ( x + 2 ) 2 ( x − 1 ) x = x + 2 A + ( x + 2 ) 2 B + x − 1 C .
Multiplying both by denominator gives x = A ( x + 2 ) ( x − 1 ) + B ( x − 1 ) + C ( x + 2 ) 2 {x}={A}{\left({x}+{2}\right)}{\left({x}-{1}\right)}+{B}{\left({x}-{1}\right)}+{C}{{\left({x}+{2}\right)}}^{{2}} x = A ( x + 2 ) ( x − 1 ) + B ( x − 1 ) + C ( x + 2 ) 2 .
If x = 1 {x}={1} x = 1 then 1 = A ( 1 + 2 ) ( 1 − 1 ) + B ( 1 − 1 ) + C ( 1 + 2 ) 2 {1}={A}{\left({1}+{2}\right)}{\left({1}-{1}\right)}+{B}{\left({1}-{1}\right)}+{C}{{\left({1}+{2}\right)}}^{{2}} 1 = A ( 1 + 2 ) ( 1 − 1 ) + B ( 1 − 1 ) + C ( 1 + 2 ) 2 or C = 1 9 {C}=\frac{{1}}{{9}} C = 9 1 .
If x = − 2 {x}=-{2} x = − 2 then − 2 = A ( − 2 + 2 ) ( − 2 − 1 ) + B ( − 2 − 1 ) + C ( − 2 + 2 ) 2 -{2}={A}{\left(-{2}+{2}\right)}{\left(-{2}-{1}\right)}+{B}{\left(-{2}-{1}\right)}+{C}{{\left(-{2}+{2}\right)}}^{{2}} − 2 = A ( − 2 + 2 ) ( − 2 − 1 ) + B ( − 2 − 1 ) + C ( − 2 + 2 ) 2 or B = 2 3 {B}=\frac{{2}}{{3}} B = 3 2 .
To find constant A we can't use second method anymore, so we rewrite x = A ( x + 2 ) ( x − 1 ) + B ( x − 1 ) + C ( x + 2 ) 2 {x}={A}{\left({x}+{2}\right)}{\left({x}-{1}\right)}+{B}{\left({x}-{1}\right)}+{C}{{\left({x}+{2}\right)}}^{{2}} x = A ( x + 2 ) ( x − 1 ) + B ( x − 1 ) + C ( x + 2 ) 2 as
x = ( A + C ) x 2 + ( A + B + 4 C ) x + ( − 2 A − B + 4 C ) {x}={\left({A}+{C}\right)}{{x}}^{{2}}+{\left({A}+{B}+{4}{C}\right)}{x}+{\left(-{2}{A}-{B}+{4}{C}\right)} x = ( A + C ) x 2 + ( A + B + 4 C ) x + ( − 2 A − B + 4 C ) .
From this we have that A + C = 0 {A}+{C}={0} A + C = 0 . We've already found that C = 1 9 {C}=\frac{{1}}{{9}} C = 9 1 , so A = − 1 9 {A}=-\frac{{1}}{{9}} A = − 9 1 .
Therefore, x ( x + 2 ) 2 ( x − 1 ) = − 1 9 1 x + 2 + 2 3 1 ( x + 2 ) 2 + 1 9 1 x − 1 \frac{{x}}{{{{\left({x}+{2}\right)}}^{{2}}{\left({x}-{1}\right)}}}=-\frac{{1}}{{9}}\frac{{1}}{{{x}+{2}}}+\frac{{2}}{{3}}\frac{{1}}{{{\left({x}+{2}\right)}}^{{2}}}+\frac{{1}}{{9}}\frac{{1}}{{{x}-{1}}} ( x + 2 ) 2 ( x − 1 ) x = − 9 1 x + 2 1 + 3 2 ( x + 2 ) 2 1 + 9 1 x − 1 1 .
Thus, required integral is ∫ ( − 1 9 1 x + 2 + 1 3 1 ( x + 2 ) 2 + 1 9 1 x − 1 ) d x = \int{\left(-\frac{{1}}{{9}}\frac{{1}}{{{x}+{2}}}+\frac{{1}}{{3}}\frac{{1}}{{{\left({x}+{2}\right)}}^{{2}}}+\frac{{1}}{{9}}\frac{{1}}{{{x}-{1}}}\right)}{d}{x}= ∫ ( − 9 1 x + 2 1 + 3 1 ( x + 2 ) 2 1 + 9 1 x − 1 1 ) d x =
= − 1 9 ln ∣ x + 2 ∣ − 2 3 1 x + 2 + 1 9 ln ∣ x − 1 ∣ + C =-\frac{{1}}{{9}}{\ln}{\left|{x}+{2}\right|}-\frac{{2}}{{3}}\frac{{1}}{{{x}+{2}}}+\frac{{1}}{{9}}{\ln}{\left|{x}-{1}\right|}+{C} = − 9 1 ln ∣ x + 2 ∣ − 3 2 x + 2 1 + 9 1 ln ∣ x − 1 ∣ + C .
Example 8 . Find ∫ x 2 x 2 − 1 d x \int\frac{{{x}}^{{2}}}{{{{x}}^{{2}}-{1}}}{d}{x} ∫ x 2 − 1 x 2 d x .
First perform long division: x 2 x 2 − 1 = 1 + 1 x 2 − 1 \frac{{{{x}}^{{2}}}}{{{{x}}^{{2}}-{1}}}={1}+\frac{{1}}{{{{x}}^{{2}}-{1}}} x 2 − 1 x 2 = 1 + x 2 − 1 1 .
Partial fraction decomposition is 1 x 2 − 1 = 1 2 1 x − 1 − 1 2 1 x + 1 \frac{{1}}{{{{x}}^{{2}}-{1}}}=\frac{{1}}{{2}}\frac{{1}}{{{x}-{1}}}-\frac{{1}}{{2}}\frac{{1}}{{{x}+{1}}} x 2 − 1 1 = 2 1 x − 1 1 − 2 1 x + 1 1 .
Therefore, ∫ x 2 x 2 − 1 d x = ∫ ( 1 + 1 2 1 x − 1 − 1 2 1 x + 1 ) d x = x + 1 2 ln ∣ x − 1 ∣ − 1 2 ln ∣ x + 1 ∣ + C \int\frac{{{{x}}^{{2}}}}{{{{x}}^{{2}}-{1}}}{d}{x}=\int{\left({1}+\frac{{1}}{{2}}\frac{{1}}{{{x}-{1}}}-\frac{{1}}{{2}}\frac{{1}}{{{x}+{1}}}\right)}{d}{x}={x}+\frac{{1}}{{2}}{\ln}{\left|{x}-{1}\right|}-\frac{{1}}{{2}}{\ln}{\left|{x}+{1}\right|}+{C} ∫ x 2 − 1 x 2 d x = ∫ ( 1 + 2 1 x − 1 1 − 2 1 x + 1 1 ) d x = x + 2 1 ln ∣ x − 1 ∣ − 2 1 ln ∣ x + 1 ∣ + C .
Some integral with roots can be expressed as integral of rational function .
Example 9 . ∫ 1 x − x + 2 d x \int\frac{{1}}{{{x}-\sqrt{{{x}+{2}}}}}{d}{x} ∫ x − x + 2 1 d x .
Let u = x + 2 {u}=\sqrt{{{x}+{2}}} u = x + 2 then d u = 1 2 1 x + 2 d x {d}{u}=\frac{{1}}{{2}}\frac{{1}}{{\sqrt{{{x}+{2}}}}}{d}{x} d u = 2 1 x + 2 1 d x or d x = 2 x + 2 d u = 2 u d u {d}{x}={2}\sqrt{{{x}+{2}}}{d}{u}={2}{u}{d}{u} d x = 2 x + 2 d u = 2 u d u .
Also since u = x + 2 {u}=\sqrt{{{x}+{2}}} u = x + 2 then x = u 2 − 2 {x}={{u}}^{{2}}-{2} x = u 2 − 2 .
So, ∫ 1 x − x + 2 d x = ∫ 2 u u 2 − u − 2 d u \int\frac{{1}}{{{x}-\sqrt{{{x}+{2}}}}}{d}{x}=\int\frac{{{2}{u}}}{{{{u}}^{{2}}-{u}-{2}}}{d}{u} ∫ x − x + 2 1 d x = ∫ u 2 − u − 2 2 u d u .
Since u 2 − u − 2 = ( u − 2 ) ( u + 1 ) {{u}}^{{2}}-{u}-{2}={\left({u}-{2}\right)}{\left({u}+{1}\right)} u 2 − u − 2 = ( u − 2 ) ( u + 1 ) then partial fraction decomposition is 2 u ( u − 2 ) ( u + 1 ) = A u − 2 + B u + 1 \frac{{{2}{u}}}{{{\left({u}-{2}\right)}{\left({u}+{1}\right)}}}=\frac{{A}}{{{u}-{2}}}+\frac{{B}}{{{u}+{1}}} ( u − 2 ) ( u + 1 ) 2 u = u − 2 A + u + 1 B .
Multiplying by ( u − 2 ) ( u + 1 ) {\left({u}-{2}\right)}{\left({u}+{1}\right)} ( u − 2 ) ( u + 1 ) yields 2 u = A ( u + 1 ) + B ( u − 2 ) {2}{u}={A}{\left({u}+{1}\right)}+{B}{\left({u}-{2}\right)} 2 u = A ( u + 1 ) + B ( u − 2 ) .
If u = − 1 {u}=-{1} u = − 1 then 2 ⋅ ( − 1 ) = A ( − 1 + 1 ) + B ( − 1 − 2 ) {2}\cdot{\left(-{1}\right)}={A}{\left(-{1}+{1}\right)}+{B}{\left(-{1}-{2}\right)} 2 ⋅ ( − 1 ) = A ( − 1 + 1 ) + B ( − 1 − 2 ) or B = 2 3 {B}=\frac{{2}}{{3}} B = 3 2 .
If u = 2 {u}={2} u = 2 then 2 ⋅ 2 = A ( 2 + 1 ) + B ( 2 − 2 ) {2}\cdot{2}={A}{\left({2}+{1}\right)}+{B}{\left({2}-{2}\right)} 2 ⋅ 2 = A ( 2 + 1 ) + B ( 2 − 2 ) or A = 4 3 {A}=\frac{{4}}{{3}} A = 3 4 .
So, ∫ 2 u u 2 − u − 2 d u = ∫ ( 4 3 1 u − 2 + 2 3 1 u + 1 ) d u = 4 3 ln ∣ u − 2 ∣ + 2 3 ln ∣ u + 1 ∣ + C = \int\frac{{{2}{u}}}{{{{u}}^{{2}}-{u}-{2}}}{d}{u}=\int{\left(\frac{{4}}{{3}}\frac{{1}}{{{u}-{2}}}+\frac{{2}}{{3}}\frac{{1}}{{{u}+{1}}}\right)}{d}{u}=\frac{{4}}{{3}}{\ln}{\left|{u}-{2}\right|}+\frac{{2}}{{3}}{\ln}{\left|{u}+{1}\right|}+{C}= ∫ u 2 − u − 2 2 u d u = ∫ ( 3 4 u − 2 1 + 3 2 u + 1 1 ) d u = 3 4 ln ∣ u − 2 ∣ + 3 2 ln ∣ u + 1 ∣ + C =
= 4 3 ln ∣ x + 2 − 2 ∣ + 2 3 ln ∣ x + 2 + 1 ∣ + C =\frac{{4}}{{3}}{\ln}{\left|\sqrt{{{x}+{2}}}-{2}\right|}+\frac{{2}}{{3}}{\ln}{\left|\sqrt{{{x}+{2}}}+{1}\right|}+{C} = 3 4 ln ∣ ∣ x + 2 − 2 ∣ ∣ + 3 2 ln ∣ ∣ x + 2 + 1 ∣ ∣ + C .
Example 10 . Find ∫ 3 x + 5 x 2 + 10 x + 34 d x \int\frac{{{3}{x}+{5}}}{{{{x}}^{{2}}+{10}{x}+{34}}}{d}{x} ∫ x 2 + 10 x + 34 3 x + 5 d x .
Factor in denominator is irreducible, so complete the square: x 2 + 10 x + 34 = x 2 + 10 x + 25 + 9 = ( x + 5 ) 2 + 9 {{x}}^{{2}}+{10}{x}+{34}={{x}}^{{2}}+{10}{x}+{25}+{9}={{\left({x}+{5}\right)}}^{{2}}+{9} x 2 + 10 x + 34 = x 2 + 10 x + 25 + 9 = ( x + 5 ) 2 + 9 .
Now make substitution u = x + 5 {u}={x}+{5} u = x + 5 then d u = d x {d}{u}={d}{x} d u = d x and x = u − 5 {x}={u}-{5} x = u − 5 .
Thus, ∫ 3 x + 5 x 2 + 10 x + 34 d x = ∫ 3 ( u − 5 ) + 5 u 2 + 9 d u = 3 ∫ u u 2 + 9 d u − 10 ∫ 1 u 2 + 9 d u = \int\frac{{{3}{x}+{5}}}{{{{x}}^{{2}}+{10}{x}+{34}}}{d}{x}=\int\frac{{{3}{\left({u}-{5}\right)}+{5}}}{{{{u}}^{{2}}+{9}}}{d}{u}={3}\int\frac{{u}}{{{{u}}^{{2}}+{9}}}{d}{u}-{10}\int\frac{{1}}{{{{u}}^{{2}}+{9}}}{d}{u}= ∫ x 2 + 10 x + 34 3 x + 5 d x = ∫ u 2 + 9 3 ( u − 5 ) + 5 d u = 3 ∫ u 2 + 9 u d u − 10 ∫ u 2 + 9 1 d u =
= 3 2 ln ∣ u 2 + 9 ∣ − 10 3 arctan ( u 3 ) + C = 3 2 ln ( ( x + 5 ) 2 + 9 ) − 10 3 arctan ( x + 5 3 ) + C =\frac{{3}}{{2}}{\ln}{\left|{{u}}^{{2}}+{9}\right|}-\frac{{10}}{{3}}{\operatorname{arctan}{{\left(\frac{{u}}{{3}}\right)}}}+{C}=\frac{{3}}{{2}}{\ln{{\left({{\left({x}+{5}\right)}}^{{2}}+{9}\right)}}}-\frac{{10}}{{3}}{\operatorname{arctan}{{\left(\frac{{{x}+{5}}}{{3}}\right)}}}+{C} = 2 3 ln ∣ ∣ u 2 + 9 ∣ ∣ − 3 10 arctan ( 3 u ) + C = 2 3 ln ( ( x + 5 ) 2 + 9 ) − 3 10 arctan ( 3 x + 5 ) + C .
Now, let's see how to handle integrals where irreducible factor is raised to some power.
Example 11 . Evaluate ∫ 1 ( x 2 + 4 x + 13 ) 3 d x \int\frac{{1}}{{{\left({{x}}^{{2}}+{4}{x}+{13}\right)}}^{{3}}}{d}{x} ∫ ( x 2 + 4 x + 13 ) 3 1 d x .
We first complete the square: x 2 + 4 x + 13 = x 2 + 4 x + 4 + 9 = ( x + 2 ) 2 + 9 {{x}}^{{2}}+{4}{x}+{13}={{x}}^{{2}}+{4}{x}+{4}+{9}={{\left({x}+{2}\right)}}^{{2}}+{9} x 2 + 4 x + 13 = x 2 + 4 x + 4 + 9 = ( x + 2 ) 2 + 9 .
Now, make substitution u = x + 2 {u}={x}+{2} u = x + 2 then d u = d x {d}{u}={d}{x} d u = d x .
∫ 1 ( ( x + 2 ) 2 + 9 ) 3 d x = ∫ 1 ( u 2 + 9 ) 3 d u \int\frac{{1}}{{{\left({{\left({x}+{2}\right)}}^{{2}}+{9}\right)}}^{{3}}}{d}{x}=\int\frac{{1}}{{{\left({{u}}^{{2}}+{9}\right)}}^{{3}}}{d}{u} ∫ ( ( x + 2 ) 2 + 9 ) 3 1 d x = ∫ ( u 2 + 9 ) 3 1 d u .
We will need trig substitution here.
Let u = 3 tan ( t ) {u}={3}{\tan{{\left({t}\right)}}} u = 3 tan ( t ) then u 2 + 9 = 9 tan 2 ( t ) + 9 = 9 sec 2 ( t ) {{u}}^{{2}}+{9}={9}{{\tan}}^{{2}}{\left({t}\right)}+{9}={9}{{\sec}}^{{2}}{\left({t}\right)} u 2 + 9 = 9 tan 2 ( t ) + 9 = 9 sec 2 ( t ) and d u = 3 sec 2 ( t ) d t {d}{u}={3}{{\sec}}^{{2}}{\left({t}\right)}{d}{t} d u = 3 sec 2 ( t ) d t .
So, ∫ 1 ( u 2 + 9 ) 3 d u = ∫ 3 sec 2 ( t ) 9 sec 2 ( t ) d t = 1 243 ∫ 1 sec 4 ( t ) d t \int\frac{{1}}{{{\left({{u}}^{{2}}+{9}\right)}}^{{3}}}{d}{u}=\int\frac{{{3}{{\sec}}^{{2}}{\left({t}\right)}}}{{{9}{{\sec}}^{{2}}{\left({t}\right)}}}{d}{t}=\frac{{1}}{{243}}\int\frac{{1}}{{{{\sec}}^{{4}}{\left({t}\right)}}}{d}{t} ∫ ( u 2 + 9 ) 3 1 d u = ∫ 9 s e c 2 ( t ) 3 s e c 2 ( t ) d t = 243 1 ∫ s e c 4 ( t ) 1 d t .
To find this integral we need to use techniques from Integrals Involving Trig Functions note.
1 243 ∫ 1 sec 4 ( t ) d t = 1 243 ∫ cos 4 ( t ) d t = 1 243 ∫ ( cos 2 ( t ) ) 2 d t = 1 243 ∫ ( 1 2 ( 1 + cos ( 2 t ) ) ) 2 d t = \frac{{1}}{{243}}\int\frac{{1}}{{{{\sec}}^{{4}}{\left({t}\right)}}}{d}{t}=\frac{{1}}{{243}}\int{{\cos}}^{{4}}{\left({t}\right)}{d}{t}=\frac{{1}}{{243}}\int{{\left({{\cos}}^{{2}}{\left({t}\right)}\right)}}^{{2}}{d}{t}=\frac{{1}}{{243}}\int{{\left(\frac{{1}}{{2}}{\left({1}+{\cos{{\left({2}{t}\right)}}}\right)}\right)}}^{{2}}{d}{t}= 243 1 ∫ s e c 4 ( t ) 1 d t = 243 1 ∫ cos 4 ( t ) d t = 243 1 ∫ ( cos 2 ( t ) ) 2 d t = 243 1 ∫ ( 2 1 ( 1 + cos ( 2 t ) ) ) 2 d t =
= 1 972 ∫ ( 1 + 2 cos ( 2 t ) + cos 2 ( 2 t ) ) d t = 1 972 ∫ ( 1 + 2 cos ( 2 t ) + 1 2 ( 1 + cos ( 4 t ) ) ) d t = =\frac{{1}}{{972}}\int{\left({1}+{2}{\cos{{\left({2}{t}\right)}}}+{{\cos}}^{{2}}{\left({2}{t}\right)}\right)}{d}{t}=\frac{{1}}{{972}}\int{\left({1}+{2}{\cos{{\left({2}{t}\right)}}}+\frac{{1}}{{2}}{\left({1}+{\cos{{\left({4}{t}\right)}}}\right)}\right)}{d}{t}= = 972 1 ∫ ( 1 + 2 cos ( 2 t ) + cos 2 ( 2 t ) ) d t = 972 1 ∫ ( 1 + 2 cos ( 2 t ) + 2 1 ( 1 + cos ( 4 t ) ) ) d t =
= 1 972 ( 3 2 t + sin ( 2 t ) + 1 8 sin ( 4 t ) ) + C =\frac{{1}}{{972}}{\left(\frac{{3}}{{2}}{t}+{\sin{{\left({2}{t}\right)}}}+\frac{{1}}{{8}}{\sin{{\left({4}{t}\right)}}}\right)}+{C} = 972 1 ( 2 3 t + sin ( 2 t ) + 8 1 sin ( 4 t ) ) + C .
Since u = 3 tan ( t ) {u}={3}{\tan{{\left({t}\right)}}} u = 3 tan ( t ) and u = ( x + 2 ) {u}={\left({x}+{2}\right)} u = ( x + 2 ) then t = arctan ( x + 2 3 ) {t}={\operatorname{arctan}{{\left(\frac{{{x}+{2}}}{{3}}\right)}}} t = arctan ( 3 x + 2 ) .
So, ∫ 1 ( x 2 + 4 x + 13 ) 3 d x = \int\frac{{1}}{{{\left({{x}}^{{2}}+{4}{x}+{13}\right)}}^{{3}}}{d}{x}= ∫ ( x 2 + 4 x + 13 ) 3 1 d x =
= 1 972 ( 3 2 arctan ( x + 2 3 ) + sin ( 2 arctan ( x + 2 3 ) ) + 1 8 sin ( 4 arctan ( x + 2 3 ) ) ) + C =\frac{{1}}{{972}}{\left(\frac{{3}}{{2}}{\operatorname{arctan}{{\left(\frac{{{x}+{2}}}{{3}}\right)}}}+{\sin{{\left({2}{\operatorname{arctan}{{\left(\frac{{{x}+{2}}}{{3}}\right)}}}\right)}}}+\frac{{1}}{{8}}{\sin{{\left({4}{\operatorname{arctan}{{\left(\frac{{{x}+{2}}}{{3}}\right)}}}\right)}}}\right)}+{C} = 972 1 ( 2 3 arctan ( 3 x + 2 ) + sin ( 2 arctan ( 3 x + 2 ) ) + 8 1 sin ( 4 arctan ( 3 x + 2 ) ) ) + C .