Integration Formulas (Table of Indefinite Integrals)

Below is a table of Indefinite Integrals. With this table and integration techniques, you will be able to find majority of integrals.

It is also worth noting that unlike derivative (we can find derivative of any function), we can't find integral of any function: this means that we can't find integral in terms of functions we know.

Examples of such functions are ex2dx\int{{e}}^{{{{x}}^{{2}}}}{d}{x}, sin(x)xdx\int\frac{{{\sin{{\left({x}\right)}}}}}{{x}}{d}{x}, x3+1dx\int\sqrt{{{{x}}^{{3}}+{1}}}{d}{x} etc.

Basic Forms
(af(x)+bg(x))dx=af(x)dx+bg(x)dx\int{\left({a}{f{{\left({x}\right)}}}+{b}{g{{\left({x}\right)}}}\right)}{d}{x}={a}\int{f{{\left({x}\right)}}}{d}{x}+{b}\int{g{{\left({x}\right)}}}{d}{x} where a{a} and b{b} are constants
udv=uvvdu\int{u}{d}{v}={u}{v}-\int{v}{d}{u} (Integration by Parts)
xndx={xn+1n+1+Cifn1lnx+Cifn=1\int{{x}}^{{n}}{d}{x}={\left\{\begin{array}{c}\frac{{{{x}}^{{{n}+{1}}}}}{{{n}+{1}}}+{C}{\quad\text{if}\quad}{n}\ne-{1}\\{\ln}{\left|{x}\right|}+{C}{\quad\text{if}\quad}{n}=-{1}\\ \end{array}\right.}
axdx=axln(a)+C\int{{a}}^{{x}}{d}{x}=\frac{{{{a}}^{{x}}}}{{{\ln{{\left({a}\right)}}}}}+{C}
exdx=ex+C\int{{e}}^{{x}}{d}{x}={{e}}^{{x}}+{C}
sin(x)dx=cos(x)+C\int{\sin{{\left({x}\right)}}}{d}{x}=-{\cos{{\left({x}\right)}}}+{C}
cos(x)dx=sin(x)+C\int{\cos{{\left({x}\right)}}}{d}{x}={\sin{{\left({x}\right)}}}+{C}
sec2(x)dx=tan(x)+C\int{{\sec}}^{{2}}{\left({x}\right)}{d}{x}={\tan{{\left({x}\right)}}}+{C}
csc2(x)dx=cot(x)+C\int{{\csc}}^{{2}}{\left({x}\right)}{d}{x}=-{\cot{{\left({x}\right)}}}+{C}
sec(x)tan(x)dx=sec(x)+C\int{\sec{{\left({x}\right)}}}{\tan{{\left({x}\right)}}}{d}{x}={\sec{{\left({x}\right)}}}+{C}
csc(x)cot(x)dx=csc(x)+C\int{\csc{{\left({x}\right)}}}{\cot{{\left({x}\right)}}}{d}{x}=-{\csc{{\left({x}\right)}}}+{C}
tan(x)dx=lncos(x)+C=lnsec(x)+C\int{\tan{{\left({x}\right)}}}{d}{x}=-{\ln}{\left|{\cos{{\left({x}\right)}}}\right|}+{C}={\ln}{\left|{\sec{{\left({x}\right)}}}\right|}+{C}
cot(x)dx=lnsin(x)+C\int{\cot{{\left({x}\right)}}}{d}{x}={\ln}{\left|{\sin{{\left({x}\right)}}}\right|}+{C}
sec(x)dx=lnsec(x)+tan(x)+C\int{\sec{{\left({x}\right)}}}{d}{x}={\ln}{\left|{\sec{{\left({x}\right)}}}+{\tan{{\left({x}\right)}}}\right|}+{C}
csc(x)dx=lncsc(x)cot(x)+C\int{\csc{{\left({x}\right)}}}{d}{x}={\ln}{\left|{\csc{{\left({x}\right)}}}-{\cot{{\left({x}\right)}}}\right|}+{C}
dxa2x2=arcsin(xa)+C\int\frac{{{d}{x}}}{\sqrt{{{{a}}^{{2}}-{{x}}^{{2}}}}}={\operatorname{arcsin}{{\left(\frac{{x}}{{a}}\right)}}}+{C}
dxa2+x2=1aarctan(xa)+C\int\frac{{{d}{x}}}{{{{a}}^{{2}}+{{x}}^{{2}}}}=\frac{{1}}{{a}}{\operatorname{arctan}{{\left(\frac{{x}}{{a}}\right)}}}+{C}
dxxx2a2=1aarcsec(xa)+C\int\frac{{{d}{x}}}{{{x}\sqrt{{{{x}}^{{2}}-{{a}}^{{2}}}}}}=\frac{{1}}{{a}}\text{arcsec}{\left(\frac{{x}}{{a}}\right)}+{C}
dxa2x2=12alnx+axa+C\int\frac{{{d}{x}}}{{{{a}}^{{2}}-{{x}}^{{2}}}}=\frac{{1}}{{{2}{a}}}{\ln}{\left|\frac{{{x}+{a}}}{{{x}-{a}}}\right|}+{C}
dxx2a2=12alnxax+a+C\int\frac{{{d}{x}}}{{{{x}}^{{2}}-{{a}}^{{2}}}}=\frac{{1}}{{{2}{a}}}{\ln}{\left|\frac{{{x}-{a}}}{{{x}+{a}}}\right|}+{C}
Exponential and Logarithmic Forms
xeaxdx=1a2(ax1)eax+C\int{x}{{e}}^{{{a}{x}}}{d}{x}=\frac{{1}}{{{{a}}^{{2}}}}{\left({a}{x}-{1}\right)}{{e}}^{{{a}{x}}}+{C}
xneaxdx=1axneaxnaxn1eaxdx\int{{x}}^{{n}}{{e}}^{{{a}{x}}}{d}{x}=\frac{{1}}{{a}}{{x}}^{{n}}{{e}}^{{{a}{x}}}-\frac{{n}}{{a}}\int{{x}}^{{{n}-{1}}}{{e}}^{{{a}{x}}}{d}{x}
eaxsin(bx)dx=eaxa2+b2(asin(bx)bcos(bx))+C\int{{e}}^{{{a}{x}}}{\sin{{\left({b}{x}\right)}}}{d}{x}=\frac{{{{e}}^{{{a}{x}}}}}{{{{a}}^{{2}}+{{b}}^{{2}}}}{\left({\operatorname{asin}{{\left({b}{x}\right)}}}-{b}{\cos{{\left({b}{x}\right)}}}\right)}+{C}
eaxcos(bx)dx=eaxa2+b2(acos(bx)+bsin(bx))+C\int{{e}}^{{{a}{x}}}{\cos{{\left({b}{x}\right)}}}{d}{x}=\frac{{{{e}}^{{{a}{x}}}}}{{{{a}}^{{2}}+{{b}}^{{2}}}}{\left({\operatorname{acos}{{\left({b}{x}\right)}}}+{b}{\sin{{\left({b}{x}\right)}}}\right)}+{C}
ln(x)dx=x(ln(x)1)+C\int{\ln{{\left({x}\right)}}}{d}{x}={x}{\left({\ln{{\left({x}\right)}}}-{1}\right)}+{C}
xnln(x)dx=xn+1(n+1)2((n+1)ln(x)1)+C\int{{x}}^{{n}}{\ln{{\left({x}\right)}}}{d}{x}=\frac{{{{x}}^{{{n}+{1}}}}}{{{{\left({n}+{1}\right)}}^{{2}}}}{\left({\left({n}+{1}\right)}{\ln{{\left({x}\right)}}}-{1}\right)}+{C}
1xln(x)dx=lnln(u)+C\int\frac{{1}}{{{x}{\ln{{\left({x}\right)}}}}}{d}{x}={\ln}{\left|{\ln{{\left({u}\right)}}}\right|}+{C}
Trigonometric Forms
sin2(x)dx=12x14sin(2x)+C\int{{\sin}}^{{2}}{\left({x}\right)}{d}{x}=\frac{{1}}{{2}}{x}-\frac{{1}}{{4}}{\sin{{\left({2}{x}\right)}}}+{C}
cos2(x)dx=12x+14sin(2x)+C\int{{\cos}}^{{2}}{\left({x}\right)}{d}{x}=\frac{{1}}{{2}}{x}+\frac{{1}}{{4}}{\sin{{\left({2}{x}\right)}}}+{C}
tan2(x)dx=tan(x)x+C\int{{\tan}}^{{2}}{\left({x}\right)}{d}{x}={\tan{{\left({x}\right)}}}-{x}+{C}
cot2(x)dx=cot(x)x+C\int{{\cot}}^{{2}}{\left({x}\right)}{d}{x}=-{\cot{{\left({x}\right)}}}-{x}+{C}
sin3(x)dx=13(2+sin2(x))cos(x)+C\int{{\sin}}^{{3}}{\left({x}\right)}{d}{x}=-\frac{{1}}{{3}}{\left({2}+{{\sin}}^{{2}}{\left({x}\right)}\right)}{\cos{{\left({x}\right)}}}+{C}
cos3(x)dx=13(2+cos2(x))sin(x)+C\int{{\cos}}^{{3}}{\left({x}\right)}{d}{x}=\frac{{1}}{{3}}{\left({2}+{{\cos}}^{{2}}{\left({x}\right)}\right)}{\sin{{\left({x}\right)}}}+{C}
tan3(x)dx=12tan2(x)+lncos(x)+C\int{{\tan}}^{{3}}{\left({x}\right)}{d}{x}=\frac{{1}}{{2}}{{\tan}}^{{2}}{\left({x}\right)}+{\ln}{\left|{\cos{{\left({x}\right)}}}\right|}+{C}
cot3(x)dx=12cot2(x)lnsin(x)+C\int{{\cot}}^{{3}}{\left({x}\right)}{d}{x}=-\frac{{1}}{{2}}{{\cot}}^{{2}}{\left({x}\right)}-{\ln}{\left|{\sin{{\left({x}\right)}}}\right|}+{C}
sec3(x)dx=12sec(x)tan(x)+12lnsec(x)+tan(x)+C\int{{\sec}}^{{3}}{\left({x}\right)}{d}{x}=\frac{{1}}{{2}}{\sec{{\left({x}\right)}}}{\tan{{\left({x}\right)}}}+\frac{{1}}{{2}}{\ln}{\left|{\sec{{\left({x}\right)}}}+{\tan{{\left({x}\right)}}}\right|}+{C}
csc3(x)dx=12csc(x)cot(x)+12lncsc(x)cot(x)+C\int{{\csc}}^{{3}}{\left({x}\right)}{d}{x}=-\frac{{1}}{{2}}{\csc{{\left({x}\right)}}}{\cot{{\left({x}\right)}}}+\frac{{1}}{{2}}{\ln}{\left|{\csc{{\left({x}\right)}}}-{\cot{{\left({x}\right)}}}\right|}+{C}
sinn(x)dx=1nsinn1(x)cos(x)+n1nsinn2(x)dx\int{{\sin}}^{{n}}{\left({x}\right)}{d}{x}=-\frac{{1}}{{n}}{{\sin}}^{{{n}-{1}}}{\left({x}\right)}{\cos{{\left({x}\right)}}}+\frac{{{n}-{1}}}{{n}}\int{{\sin}}^{{{n}-{2}}}{\left({x}\right)}{d}{x}
cosn(x)dx=1ncosn1(x)sin(x)+n1ncosn2(x)dx\int{{\cos}}^{{n}}{\left({x}\right)}{d}{x}=\frac{{1}}{{n}}{{\cos}}^{{{n}-{1}}}{\left({x}\right)}{\sin{{\left({x}\right)}}}+\frac{{{n}-{1}}}{{n}}\int{{\cos}}^{{{n}-{2}}}{\left({x}\right)}{d}{x}
tann(x)dx=1n1tann1(x)tann2(x)dx\int{{\tan}}^{{n}}{\left({x}\right)}{d}{x}=\frac{{1}}{{{n}-{1}}}{{\tan}}^{{{n}-{1}}}{\left({x}\right)}-\int{{\tan}}^{{{n}-{2}}}{\left({x}\right)}{d}{x}
cotn(x)dx=1n1cotn1(x)cotn2(x)dx\int{{\cot}}^{{n}}{\left({x}\right)}{d}{x}=-\frac{{1}}{{{n}-{1}}}{{\cot}}^{{{n}-{1}}}{\left({x}\right)}-\int{{\cot}}^{{{n}-{2}}}{\left({x}\right)}{d}{x}
secn(x)dx=1n1tan(x)secn2(x)+n2n1secn2(x)dx\int{{\sec}}^{{n}}{\left({x}\right)}{d}{x}=\frac{{1}}{{{n}-{1}}}{\tan{{\left({x}\right)}}}{{\sec}}^{{{n}-{2}}}{\left({x}\right)}+\frac{{{n}-{2}}}{{{n}-{1}}}\int{{\sec}}^{{{n}-{2}}}{\left({x}\right)}{d}{x}
cscn(x)dx=1n1cot(x)cscn2(x)+n2n1cscn2(x)dx\int{{\csc}}^{{n}}{\left({x}\right)}{d}{x}=-\frac{{1}}{{{n}-{1}}}{\cot{{\left({x}\right)}}}{{\csc}}^{{{n}-{2}}}{\left({x}\right)}+\frac{{{n}-{2}}}{{{n}-{1}}}\int{{\csc}}^{{{n}-{2}}}{\left({x}\right)}{d}{x}
sin(ax)sin(bx)dx=sin((ab)x)2(ab)sin((a+b)x)2(a+b)+C\int{\sin{{\left({a}{x}\right)}}}{\sin{{\left({b}{x}\right)}}}{d}{x}=\frac{{{\sin{{\left({\left({a}-{b}\right)}{x}\right)}}}}}{{{2}{\left({a}-{b}\right)}}}-\frac{{{\sin{{\left({\left({a}+{b}\right)}{x}\right)}}}}}{{{2}{\left({a}+{b}\right)}}}+{C}
cos(ax)cos(bx)dx=sin((ab)x)2(ab)+sin((a+b)x)2(a+b)+C\int{\cos{{\left({a}{x}\right)}}}{\cos{{\left({b}{x}\right)}}}{d}{x}=\frac{{{\sin{{\left({\left({a}-{b}\right)}{x}\right)}}}}}{{{2}{\left({a}-{b}\right)}}}+\frac{{{\sin{{\left({\left({a}+{b}\right)}{x}\right)}}}}}{{{2}{\left({a}+{b}\right)}}}+{C}
sin(ax)cos(bx)dx=cos((ab)x)2(ab)cos((a+b)x)2(a+b)+C\int{\sin{{\left({a}{x}\right)}}}{\cos{{\left({b}{x}\right)}}}{d}{x}=-\frac{{{\cos{{\left({\left({a}-{b}\right)}{x}\right)}}}}}{{{2}{\left({a}-{b}\right)}}}-\frac{{{\cos{{\left({\left({a}+{b}\right)}{x}\right)}}}}}{{{2}{\left({a}+{b}\right)}}}+{C}
xsin(x)dx=sin(x)xcos(x)+C\int{x}{\sin{{\left({x}\right)}}}{d}{x}={\sin{{\left({x}\right)}}}-{x}{\cos{{\left({x}\right)}}}+{C}
xcos(x)dx=cos(x)+xsin(x)+C\int{x}{\cos{{\left({x}\right)}}}{d}{x}={\cos{{\left({x}\right)}}}+{x}{\sin{{\left({x}\right)}}}+{C}
xnsin(x)dx=xncos(x)+nxn1cos(x)dx\int{{x}}^{{n}}{\sin{{\left({x}\right)}}}{d}{x}=-{{x}}^{{n}}{\cos{{\left({x}\right)}}}+{n}\int{{x}}^{{{n}-{1}}}{\cos{{\left({x}\right)}}}{d}{x}
xncos(x)dx=xnsin(x)nxn1sin(x)dx\int{{x}}^{{n}}{\cos{{\left({x}\right)}}}{d}{x}={{x}}^{{n}}{\sin{{\left({x}\right)}}}-{n}\int{{x}}^{{{n}-{1}}}{\sin{{\left({x}\right)}}}{d}{x}

sinn(x)cosm(x)dx=sinn1(x)cosm+1(x)n+m+n1n+msinn2(x)cosm(x)dx=\int{{\sin}}^{{n}}{\left({x}\right)}{{\cos}}^{{m}}{\left({x}\right)}{d}{x}=-\frac{{{{\sin}}^{{{n}-{1}}}{\left({x}\right)}{{\cos}}^{{{m}+{1}}}{\left({x}\right)}}}{{{n}+{m}}}+\frac{{{n}-{1}}}{{{n}+{m}}}\int{{\sin}}^{{{n}-{2}}}{\left({x}\right)}{{\cos}}^{{m}}{\left({x}\right)}{d}{x}=

=sinn+1(x)cosm1(x)n+m+m1n+msinn(x)cosm2(x)dx=\frac{{{{\sin}}^{{{n}+{1}}}{\left({x}\right)}{{\cos}}^{{{m}-{1}}}{\left({x}\right)}}}{{{n}+{m}}}+\frac{{{m}-{1}}}{{{n}+{m}}}\int{{\sin}}^{{n}}{\left({x}\right)}{{\cos}}^{{{m}-{2}}}{\left({x}\right)}{d}{x}

Inverse Trigonometric Forms
arcsin(x)dx=xarcsin(x)+1x2+C\int{\operatorname{arcsin}{{\left({x}\right)}}}{d}{x}={x}{\operatorname{arcsin}{{\left({x}\right)}}}+\sqrt{{{1}-{{x}}^{{2}}}}+{C}
arccos(x)dx=xarccos(x)1x2+C\int{\operatorname{arccos}{{\left({x}\right)}}}{d}{x}={x}{\operatorname{arccos}{{\left({x}\right)}}}-\sqrt{{{1}-{{x}}^{{2}}}}+{C}
arctan(x)dx=xarctan(x)12ln(1+x2)+C\int{\operatorname{arctan}{{\left({x}\right)}}}{d}{x}={x}{\operatorname{arctan}{{\left({x}\right)}}}-\frac{{1}}{{2}}{\ln{{\left({1}+{{x}}^{{2}}\right)}}}+{C}
xarcsin(x)dx=2x214arcsin(x)+x1x24+C\int{x}{\operatorname{arcsin}{{\left({x}\right)}}}{d}{x}=\frac{{{2}{{x}}^{{2}}-{1}}}{{4}}{\operatorname{arcsin}{{\left({x}\right)}}}+\frac{{{x}\sqrt{{{1}-{{x}}^{{2}}}}}}{{4}}+{C}
xarccos(x)dx=2x214arccos(x)x1x24+C\int{x}{\operatorname{arccos}{{\left({x}\right)}}}{d}{x}=\frac{{{2}{{x}}^{{2}}-{1}}}{{4}}{\operatorname{arccos}{{\left({x}\right)}}}-\frac{{{x}\sqrt{{{1}-{{x}}^{{2}}}}}}{{4}}+{C}
xarctan(x)dx=x2+12arctan(x)x2+C\int{x}{\operatorname{arctan}{{\left({x}\right)}}}{d}{x}=\frac{{{{x}}^{{2}}+{1}}}{{2}}{\operatorname{arctan}{{\left({x}\right)}}}-\frac{{x}}{{2}}+{C}
xnarcsin(x)dx=1n+1(xn+1arcsin(x)xn+11x2dx)\int{{x}}^{{n}}{\operatorname{arcsin}{{\left({x}\right)}}}{d}{x}=\frac{{1}}{{{n}+{1}}}{\left({{x}}^{{{n}+{1}}}{\operatorname{arcsin}{{\left({x}\right)}}}-\int\frac{{{{x}}^{{{n}+{1}}}}}{{\sqrt{{{1}-{{x}}^{{2}}}}}}{d}{x}\right)}, n1{n}\ne-{1}
xnarccos(x)dx=1n+1(xn+1arccos(x)+xn+11x2dx)\int{{x}}^{{n}}{\operatorname{arccos}{{\left({x}\right)}}}{d}{x}=\frac{{1}}{{{n}+{1}}}{\left({{x}}^{{{n}+{1}}}{\operatorname{arccos}{{\left({x}\right)}}}+\int\frac{{{{x}}^{{{n}+{1}}}}}{{\sqrt{{{1}-{{x}}^{{2}}}}}}{d}{x}\right)}, n1{n}\ne-{1}
xnarctan(x)dx=1n+1(xn+1arctan(x)xn+11+x2dx)\int{{x}}^{{n}}{\operatorname{arctan}{{\left({x}\right)}}}{d}{x}=\frac{{1}}{{{n}+{1}}}{\left({{x}}^{{{n}+{1}}}{\operatorname{arctan}{{\left({x}\right)}}}-\int\frac{{{{x}}^{{{n}+{1}}}}}{{{1}+{{x}}^{{2}}}}{d}{x}\right)}, n1{n}\ne-{1}
Hyperbolic Forms
sinh(x)dx=cosh(x)+C\int{\sinh{{\left({x}\right)}}}{d}{x}={\cosh{{\left({x}\right)}}}+{C}
cosh(x)dx=sinh(x)+C\int{\cosh{{\left({x}\right)}}}{d}{x}={\sinh{{\left({x}\right)}}}+{C}
tanh(x)dx=ln(cosh(x))+C\int{\tanh{{\left({x}\right)}}}{d}{x}={\ln{{\left({\cosh{{\left({x}\right)}}}\right)}}}+{C}
coth(x)dx=lnsinh(x)+C\int{\coth{{\left({x}\right)}}}{d}{x}={\ln}{\left|{\sinh{{\left({x}\right)}}}\right|}+{C}
sech(x)dx=arctansinh(x)+C\int{\operatorname{sech}{{\left({x}\right)}}}{d}{x}={\operatorname{arctan}}{\left|{\sinh{{\left({x}\right)}}}\right|}+{C}
csch(x)dx=lntanh(12x)+C\int{\operatorname{csch}{{\left({x}\right)}}}{d}{x}={\ln}{\left|{\tanh{{\left(\frac{{1}}{{2}}{x}\right)}}}\right|}+{C}
sech2(x)dx=tanh(x)+C\int{{\operatorname{sech}}}^{{2}}{\left({x}\right)}{d}{x}={\tanh{{\left({x}\right)}}}+{C}
csch2(x)dx=coth(x)+C\int{{\operatorname{csch}}}^{{2}}{\left({x}\right)}{d}{x}=-{\coth{{\left({x}\right)}}}+{C}
sech(x)tanh(x)dx=sech(x)+C\int{\operatorname{sech}{{\left({x}\right)}}}{\tanh{{\left({x}\right)}}}{d}{x}=-{s}{e}{c}{h}{\left({x}\right)}+{C}
csch(x)coth(x)dx=csch(x)+C\int{\operatorname{csch}{{\left({x}\right)}}}{\coth{{\left({x}\right)}}}{d}{x}=-{c}{s}{c}{h}{\left({x}\right)}+{C}
Forms Involving a2+x2\sqrt{{{{a}}^{{2}}+{{x}}^{{2}}}}, a>0{a}>{0}
a2+x2dx=x2a2+x2+a22ln(x+a2+x2)+C\int\sqrt{{{{a}}^{{2}}+{{x}}^{{2}}}}{d}{x}=\frac{{x}}{{2}}\sqrt{{{{a}}^{{2}}+{{x}}^{{2}}}}+\frac{{{{a}}^{{2}}}}{{2}}{\ln{{\left({x}+\sqrt{{{{a}}^{{2}}+{{x}}^{{2}}}}\right)}}}+{C}
x2a2+x2dx=x8(a2+2x2)a2+x2a48ln(x+a2+x2)+C\int{{x}}^{{2}}\sqrt{{{{a}}^{{2}}+{{x}}^{{2}}}}{d}{x}=\frac{{x}}{{8}}{\left({{a}}^{{2}}+{2}{{x}}^{{2}}\right)}\sqrt{{{{a}}^{{2}}+{{x}}^{{2}}}}-\frac{{{{a}}^{{4}}}}{{8}}{\ln{{\left({x}+\sqrt{{{{a}}^{{2}}+{{x}}^{{2}}}}\right)}}}+{C}
a2+x2xdx=a2+x2alna+a2+x2x+C\int\frac{{\sqrt{{{{a}}^{{2}}+{{x}}^{{2}}}}}}{{x}}{d}{x}=\sqrt{{{{a}}^{{2}}+{{x}}^{{2}}}}-{a}{\ln}{\left|\frac{{{a}+\sqrt{{{{a}}^{{2}}+{{x}}^{{2}}}}}}{{x}}\right|}+{C}
a2+x2x2dx=a2+x2x+ln(x+a2+x2)+C\int\frac{{\sqrt{{{{a}}^{{2}}+{{x}}^{{2}}}}}}{{{{x}}^{{2}}}}{d}{x}=-\frac{{\sqrt{{{{a}}^{{2}}+{{x}}^{{2}}}}}}{{x}}+{\ln{{\left({x}+\sqrt{{{{a}}^{{2}}+{{x}}^{{2}}}}\right)}}}+{C}
dxa2+x2=ln(x+a2+x2)+C\int\frac{{{d}{x}}}{{\sqrt{{{{a}}^{{2}}+{{x}}^{{2}}}}}}={\ln{{\left({x}+\sqrt{{{{a}}^{{2}}+{{x}}^{{2}}}}\right)}}}+{C}
x2dxa2+x2=x2a2+x2a22ln(x+a2+x2)+C\int\frac{{{{x}}^{{2}}{d}{x}}}{{\sqrt{{{{a}}^{{2}}+{{x}}^{{2}}}}}}=\frac{{x}}{{2}}\sqrt{{{{a}}^{{2}}+{{x}}^{{2}}}}-\frac{{{{a}}^{{2}}}}{{2}}{\ln{{\left({x}+\sqrt{{{{a}}^{{2}}+{{x}}^{{2}}}}\right)}}}+{C}
dxxa2+x2=1alna2+x2+ax+C\int\frac{{{d}{x}}}{{{x}\sqrt{{{{a}}^{{2}}+{{x}}^{{2}}}}}}=-\frac{{1}}{{a}}{\ln}{\left|\frac{{\sqrt{{{{a}}^{{2}}+{{x}}^{{2}}}}+{a}}}{{x}}\right|}+{C}
dxx2a2+x2=a2+x2a2x+C\int\frac{{{d}{x}}}{{{{x}}^{{2}}\sqrt{{{{a}}^{{2}}+{{x}}^{{2}}}}}}=-\frac{{\sqrt{{{{a}}^{{2}}+{{x}}^{{2}}}}}}{{{{a}}^{{2}}{x}}}+{C}
dx(a2+x2)32=xa2a2+x2+C\int\frac{{{d}{x}}}{{{{\left({{a}}^{{2}}+{{x}}^{{2}}\right)}}^{{\frac{{3}}{{2}}}}}}=\frac{{x}}{{{{a}}^{{2}}\sqrt{{{{a}}^{{2}}+{{x}}^{{2}}}}}}+{C}
Forms Involving a2x2\sqrt{{{{a}}^{{2}}-{{x}}^{{2}}}}, a>0{a}>{0}
a2x2dx=x2a2x2+a22arcsin(xa)+C\int\sqrt{{{{a}}^{{2}}-{{x}}^{{2}}}}{d}{x}=\frac{{x}}{{2}}\sqrt{{{{a}}^{{2}}-{{x}}^{{2}}}}+\frac{{{{a}}^{{2}}}}{{2}}{\operatorname{arcsin}{{\left(\frac{{x}}{{a}}\right)}}}+{C}
x2a2x2dx=x8(2x2a2)a2x2+a48arcsin(xa)+C\int{{x}}^{{2}}\sqrt{{{{a}}^{{2}}-{{x}}^{{2}}}}{d}{x}=\frac{{x}}{{8}}{\left({2}{{x}}^{{2}}-{{a}}^{{2}}\right)}\sqrt{{{{a}}^{{2}}-{{x}}^{{2}}}}+\frac{{{{a}}^{{4}}}}{{8}}{\operatorname{arcsin}{{\left(\frac{{x}}{{a}}\right)}}}+{C}
a2x2x=a2x2alna+a2x2x+C\int\frac{{\sqrt{{{{a}}^{{2}}-{{x}}^{{2}}}}}}{{x}}=\sqrt{{{{a}}^{{2}}-{{x}}^{{2}}}}-{a}{\ln}{\left|\frac{{{a}+\sqrt{{{{a}}^{{2}}-{{x}}^{{2}}}}}}{{x}}\right|}+{C}
a2x2x2dx=1xa2x2arcsin(xa)+C\int\frac{{\sqrt{{{{a}}^{{2}}-{{x}}^{{2}}}}}}{{{{x}}^{{2}}}}{d}{x}=-\frac{{1}}{{x}}\sqrt{{{{a}}^{{2}}-{{x}}^{{2}}}}-{\operatorname{arcsin}{{\left(\frac{{x}}{{a}}\right)}}}+{C}
x2a2x2dx=x2a2x2+a22arcsin(xa)+C\int\frac{{{{x}}^{{2}}}}{\sqrt{{{{a}}^{{2}}-{{x}}^{{2}}}}}{d}{x}=-\frac{{x}}{{2}}\sqrt{{{{a}}^{{2}}-{{x}}^{{2}}}}+\frac{{{{a}}^{{2}}}}{{2}}{\operatorname{arcsin}{{\left(\frac{{x}}{{a}}\right)}}}+{C}
dxxa2x2=1alna+a2x2x+C\int\frac{{{d}{x}}}{{{x}\sqrt{{{{a}}^{{2}}-{{x}}^{{2}}}}}}=-\frac{{1}}{{a}}{\ln}{\left|\frac{{{a}+\sqrt{{{{a}}^{{2}}-{{x}}^{{2}}}}}}{{x}}\right|}+{C}
dxx2a2x2=1a2xa2x2+C\int\frac{{{d}{x}}}{{{{x}}^{{2}}\sqrt{{{{a}}^{{2}}-{{x}}^{{2}}}}}}=-\frac{{1}}{{{{a}}^{{2}}{x}}}\sqrt{{{{a}}^{{2}}-{{x}}^{{2}}}}+{C}
(a2x2)32dx=x8(2x25a2)a2x2+3a48arcsin(xa)+C\int{{\left({{a}}^{{2}}-{{x}}^{{2}}\right)}}^{{\frac{{3}}{{2}}}}{d}{x}=-\frac{{x}}{{8}}{\left({2}{{x}}^{{2}}-{5}{{a}}^{{2}}\right)}\sqrt{{{{a}}^{{2}}-{{x}}^{{2}}}}+\frac{{{3}{{a}}^{{4}}}}{{8}}{\operatorname{arcsin}{{\left(\frac{{x}}{{a}}\right)}}}+{C}
dx(a2x2)32=xa2a2x2+C\int\frac{{{d}{x}}}{{{{\left({{a}}^{{2}}-{{x}}^{{2}}\right)}}^{{\frac{{3}}{{2}}}}}}=\frac{{x}}{{{{a}}^{{2}}\sqrt{{{{a}}^{{2}}-{{x}}^{{2}}}}}}+{C}
Forms Involving x2a2\sqrt{{{{x}}^{{2}}-{{a}}^{{2}}}}, a>0{a}>{0}
x2a2dx=x2x2a2a22lnx+x2a2+C\int\sqrt{{{{x}}^{{2}}-{{a}}^{{2}}}}{d}{x}=\frac{{x}}{{2}}\sqrt{{{{x}}^{{2}}-{{a}}^{{2}}}}-\frac{{{{a}}^{{2}}}}{{2}}{\ln}{\left|{x}+\sqrt{{{{x}}^{{2}}-{{a}}^{{2}}}}\right|}+{C}
x2x2a2dx=x8(2x2a2)x2a2a48lnx+x2a2+C\int{{x}}^{{2}}\sqrt{{{{x}}^{{2}}-{{a}}^{{2}}}}{d}{x}=\frac{{x}}{{8}}{\left({2}{{x}}^{{2}}-{{a}}^{{2}}\right)}\sqrt{{{{x}}^{{2}}-{{a}}^{{2}}}}-\frac{{{{a}}^{{4}}}}{{8}}{\ln}{\left|{x}+\sqrt{{{{x}}^{{2}}-{{a}}^{{2}}}}\right|}+{C}
x2a2xdx=x2a2aarccos(au)+C\int\frac{{\sqrt{{{{x}}^{{2}}-{{a}}^{{2}}}}}}{{x}}{d}{x}=\sqrt{{{{x}}^{{2}}-{{a}}^{{2}}}}-{a}\cdot{\operatorname{arccos}{{\left(\frac{{a}}{{{\left|{u}\right|}}}\right)}}}+{C}
x2a2x2dx=x2a2x+lnx+x2a2+C\int\frac{{\sqrt{{{{x}}^{{2}}-{{a}}^{{2}}}}}}{{{{x}}^{{2}}}}{d}{x}=-\frac{{\sqrt{{{{x}}^{{2}}-{{a}}^{{2}}}}}}{{x}}+{\ln}{\left|{x}+\sqrt{{{{x}}^{{2}}-{{a}}^{{2}}}}\right|}+{C}
dxx2a2=lnx+x2a2+C\int\frac{{{d}{x}}}{\sqrt{{{{x}}^{{2}}-{{a}}^{{2}}}}}={\ln}{\left|{x}+\sqrt{{{{x}}^{{2}}-{{a}}^{{2}}}}\right|}+{C}
x2x2a2dx=x2x2a2+a22lnx+x2a2+C\int\frac{{{{x}}^{{2}}}}{{\sqrt{{{{x}}^{{2}}-{{a}}^{{2}}}}}}{d}{x}=\frac{{x}}{{2}}\sqrt{{{{x}}^{{2}}-{{a}}^{{2}}}}+\frac{{{{a}}^{{2}}}}{{2}}{\ln}{\left|{x}+\sqrt{{{{x}}^{{2}}-{{a}}^{{2}}}}\right|}+{C}
dxx2x2a2=x2a2a2x+C\int\frac{{{d}{x}}}{{{{x}}^{{2}}\sqrt{{{{x}}^{{2}}-{{a}}^{{2}}}}}}=\frac{{\sqrt{{{{x}}^{{2}}-{{a}}^{{2}}}}}}{{{{a}}^{{2}}{x}}}+{C}
dx(x2a2)32=xa2x2a2+C\int\frac{{{d}{x}}}{{{{\left({{x}}^{{2}}-{{a}}^{{2}}\right)}}^{{\frac{{3}}{{2}}}}}}=-\frac{{x}}{{{{a}}^{{2}}\sqrt{{{{x}}^{{2}}-{{a}}^{{2}}}}}}+{C}
Forms Involving a+bx{a}+{b}{x}
xa+bxdx=1b2(a+bxalna+bx)+C\int\frac{{x}}{{{a}+{b}{x}}}{d}{x}=\frac{{1}}{{{{b}}^{{2}}}}{\left({a}+{b}{x}-{a}{\ln}{\left|{a}+{b}{x}\right|}\right)}+{C}
x2a+bxdx=12b3((a+bx)24a(a+bx)+2a2lna+bx)+C\int\frac{{{{x}}^{{2}}}}{{{a}+{b}{x}}}{d}{x}=\frac{{1}}{{{2}{{b}}^{{3}}}}{\left({{\left({a}+{b}{x}\right)}}^{{2}}-{4}{a}{\left({a}+{b}{x}\right)}+{2}{{a}}^{{2}}{\ln}{\left|{a}+{b}{x}\right|}\right)}+{C}
dxx(a+bx)=1alnxa+bx+C\int\frac{{{d}{x}}}{{{x}{\left({a}+{b}{x}\right)}}}=\frac{{1}}{{a}}{\ln}{\left|\frac{{x}}{{{a}+{b}{x}}}\right|}+{C}
dxx2(a+bx)=1ax+ba2lna+bxx+C\int\frac{{{d}{x}}}{{{{x}}^{{2}}{\left({a}+{b}{x}\right)}}}=-\frac{{1}}{{{a}{x}}}+\frac{{b}}{{{{a}}^{{2}}}}{\ln}{\left|\frac{{{a}+{b}{x}}}{{x}}\right|}+{C}
x(a+bx)2dx=ab2(a+bx)+1b2lna+bx+C\int\frac{{x}}{{{{\left({a}+{b}{x}\right)}}^{{2}}}}{d}{x}=\frac{{a}}{{{{b}}^{{2}}{\left({a}+{b}{x}\right)}}}+\frac{{1}}{{{{b}}^{{2}}}}{\ln}{\left|{a}+{b}{x}\right|}+{C}
dxx(a+bx)2=1a(a+bx)1a2lna+bxx+C\int\frac{{{d}{x}}}{{{x}{{\left({a}+{b}{x}\right)}}^{{2}}}}=\frac{{1}}{{{a}{\left({a}+{b}{x}\right)}}}-\frac{{1}}{{{{a}}^{{2}}}}{\ln}{\left|\frac{{{a}+{b}{x}}}{{x}}\right|}+{C}
x2(a+bx)2dx=1b3(a+bxa2a+bx2alna+bx)+C\int\frac{{{{x}}^{{2}}}}{{{{\left({a}+{b}{x}\right)}}^{{2}}}}{d}{x}=\frac{{1}}{{{{b}}^{{3}}}}{\left({a}+{b}{x}-\frac{{{{a}}^{{2}}}}{{{a}+{b}{x}}}-{2}{a}{\ln}{\left|{a}+{b}{x}\right|}\right)}+{C}
xa+bxdx=215b2(3bx2a)(a+bx)32+C\int{x}\sqrt{{{a}+{b}{x}}}{d}{x}=\frac{{2}}{{{15}{{b}}^{{2}}}}{\left({3}{b}{x}-{2}{a}\right)}{{\left({a}+{b}{x}\right)}}^{{\frac{{3}}{{2}}}}+{C}
xa+bxdx=23b2(bx2a)a+bx+C\int\frac{{x}}{{\sqrt{{{a}+{b}{x}}}}}{d}{x}=\frac{{2}}{{{3}{{b}}^{{2}}}}{\left({b}{x}-{2}{a}\right)}\sqrt{{{a}+{b}{x}}}+{C}
x2a+bxdx=215b3(8a2+3b2x24abx)a+bx+C\int\frac{{{{x}}^{{2}}}}{{\sqrt{{{a}+{b}{x}}}}}{d}{x}=\frac{{2}}{{{15}{{b}}^{{3}}}}{\left({8}{{a}}^{{2}}+{3}{{b}}^{{2}}{{x}}^{{2}}-{4}{a}{b}{x}\right)}\sqrt{{{a}+{b}{x}}}+{C}
dxxa+bx={1alna+bxaa+bx+a+Cifa>02aarctan(a+bxa)+Cifa<0\int\frac{{{d}{x}}}{{{x}\sqrt{{{a}+{b}{x}}}}}={\left\{\begin{array}{c}\frac{{1}}{{\sqrt{{{a}}}}}{\ln}{\left|\frac{{\sqrt{{{a}+{b}{x}}}-\sqrt{{{a}}}}}{{\sqrt{{{a}+{b}{x}}}+\sqrt{{{a}}}}}\right|}+{C}{\quad\text{if}\quad}{a}>{0}\\\frac{{2}}{{\sqrt{{-{a}}}}}{\operatorname{arctan}{{\left(\sqrt{{\frac{{{a}+{b}{x}}}{{-{a}}}}}\right)}}}+{C}{\quad\text{if}\quad}{a}<{0}\\ \end{array}\right.}
a+bxxdx=2a+bx+adxxa+bx\int\frac{{\sqrt{{{a}+{b}{x}}}}}{{x}}{d}{x}={2}\sqrt{{{a}+{b}{x}}}+{a}\int\frac{{{d}{x}}}{{{x}\sqrt{{{a}+{b}{x}}}}}
a+bxx2dx=a+bxx+b2dxxa+bx\int\frac{{\sqrt{{{a}+{b}{x}}}}}{{{{x}}^{{2}}}}{d}{x}=-\frac{{\sqrt{{{a}+{b}{x}}}}}{{x}}+\frac{{b}}{{2}}\int\frac{{{d}{x}}}{{{x}\sqrt{{{a}+{b}{x}}}}}
xna+bxdx=2b(2n+3)(xn(a+bx)32naxn1a+bxdx)\int{{x}}^{{n}}\sqrt{{{a}+{b}{x}}}{d}{x}=\frac{{2}}{{{b}{\left({2}{n}+{3}\right)}}}{\left({{x}}^{{n}}{{\left({a}+{b}{x}\right)}}^{{\frac{{3}}{{2}}}}-{n}{a}\int{{x}}^{{{n}-{1}}}\sqrt{{{a}+{b}{x}}}{d}{x}\right)}
xna+bxdx=2xna+bxb(2n+1)2nab(2n+1)xn1a+bxdx\int\frac{{{{x}}^{{n}}}}{{\sqrt{{{a}+{b}{x}}}}}{d}{x}=\frac{{{2}{{x}}^{{n}}\sqrt{{{a}+{b}{x}}}}}{{{b}{\left({2}{n}+{1}\right)}}}-\frac{{{2}{n}{a}}}{{{b}{\left({2}{n}+{1}\right)}}}\int\frac{{{{x}}^{{{n}-{1}}}}}{{\sqrt{{{a}+{b}{x}}}}}{d}{x}
dxxna+bx=a+bxa(n1)xn1b(2n3)2a(n1)dxxn1a+bx\int\frac{{{d}{x}}}{{{{x}}^{{n}}\sqrt{{{a}+{b}{x}}}}}=-\frac{{\sqrt{{{a}+{b}{x}}}}}{{{a}{\left({n}-{1}\right)}{{x}}^{{{n}-{1}}}}}-\frac{{{b}{\left({2}{n}-{3}\right)}}}{{{2}{a}{\left({n}-{1}\right)}}}\int\frac{{{d}{x}}}{{{{x}}^{{{n}-{1}}}\sqrt{{{a}+{b}{x}}}}}
Forms Involving 2axx2\sqrt{{{2}{a}{x}-{{x}}^{{2}}}}, a>0{a}>{0}
2axx2dx=xa22axx2+a22arccos(axa)+C\int\sqrt{{{2}{a}{x}-{{x}}^{{2}}}}{d}{x}=\frac{{{x}-{a}}}{{2}}\sqrt{{{2}{a}{x}-{{x}}^{{2}}}}+\frac{{{{a}}^{{2}}}}{{2}}{\operatorname{arccos}{{\left(\frac{{{a}-{x}}}{{a}}\right)}}}+{C}
x2axx2dx=2x2ax3a262axx2+a32arccos(axa)+C\int{x}\sqrt{{{2}{a}{x}-{{x}}^{{2}}}}{d}{x}=\frac{{{2}{{x}}^{{2}}-{a}{x}-{3}{{a}}^{{2}}}}{{6}}\sqrt{{{2}{a}{x}-{{x}}^{{2}}}}+\frac{{{{a}}^{{3}}}}{{2}}{\operatorname{arccos}{{\left(\frac{{{a}-{x}}}{{a}}\right)}}}+{C}
2axx2xdx=2axx2+aarccos(axa)+C\int\frac{{\sqrt{{{2}{a}{x}-{{x}}^{{2}}}}}}{{x}}{d}{x}=\sqrt{{{2}{a}{x}-{{x}}^{{2}}}}+{a}{\operatorname{arccos}{{\left(\frac{{{a}-{x}}}{{a}}\right)}}}+{C}
2axx2x2dx=22axx2xarccos(axa)+C\int\frac{{\sqrt{{{2}{a}{x}-{{x}}^{{2}}}}}}{{{{x}}^{{2}}}}{d}{x}=-\frac{{{2}\sqrt{{{2}{a}{x}-{{x}}^{{2}}}}}}{{x}}-{\operatorname{arccos}{{\left(\frac{{{a}-{x}}}{{a}}\right)}}}+{C}
dx2axx2=arccos(axa)+C\int\frac{{{d}{x}}}{{\sqrt{{{2}{a}{x}-{{x}}^{{2}}}}}}={\operatorname{arccos}{{\left(\frac{{{a}-{x}}}{{a}}\right)}}}+{C}
x2axx2dx=2axx2+aarccos(axa)+C\int\frac{{x}}{{\sqrt{{{2}{a}{x}-{{x}}^{{2}}}}}}{d}{x}=-\sqrt{{{2}{a}{x}-{{x}}^{{2}}}}+{a}{\operatorname{arccos}{{\left(\frac{{{a}-{x}}}{{a}}\right)}}}+{C}
x22axx2dx=x+3a22axx2+3a22arccos(axa)+C\int\frac{{{{x}}^{{2}}}}{{\sqrt{{{2}{a}{x}-{{x}}^{{2}}}}}}{d}{x}=-\frac{{{x}+{3}{a}}}{{2}}\sqrt{{{2}{a}{x}-{{x}}^{{2}}}}+\frac{{{3}{{a}}^{{2}}}}{{2}}{\operatorname{arccos}{{\left(\frac{{{a}-{x}}}{{a}}\right)}}}+{C}
dxx2axx2=2axx2ax+C\int\frac{{{d}{x}}}{{{x}\sqrt{{{2}{a}{x}-{{x}}^{{2}}}}}}=-\frac{{\sqrt{{{2}{a}{x}-{{x}}^{{2}}}}}}{{{a}{x}}}+{C}