Trigonometric Substitutions In Integrals

Trigonometric Substitutions are especially useful when we want to get rid of x2a2\sqrt{{{{x}}^{{2}}-{{a}}^{{2}}}}, x2+a2\sqrt{{{{x}}^{{2}}+{{a}}^{{2}}}} and a2x2\sqrt{{{{a}}^{{2}}-{{x}}^{{2}}}} under integral sign.

Recall that trignomeric identity states cos2(x)+sin2(x)=1{{\cos}}^{{2}}{\left({x}\right)}+{{\sin}}^{{2}}{\left({x}\right)}={1}.

Multiplying both sides by a2{{a}}^{{2}} gives a2cos2(x)+a2sin2(x)=a2{{a}}^{{2}}{{\cos}}^{{2}}{\left({x}\right)}+{{a}}^{{2}}{{\sin}}^{{2}}{\left({x}\right)}={{a}}^{{2}}.

Dividing both sides of equation by cos2(x){{\cos}}^{{2}}{\left({x}\right)} yields: a2+a2tan2(x)=a2sec2(x){{a}}^{{2}}+{{a}}^{{2}}{{\tan}}^{{2}}{\left({x}\right)}={{a}}^{{2}}{{\sec}}^{{2}}{\left({x}\right)}.

From these equations we have that cos(x)=1aa2(asin(x))2{\cos{{\left({x}\right)}}}=\frac{{1}}{{a}}\sqrt{{{{a}}^{{2}}-{{\left({\operatorname{asin}{{\left({x}\right)}}}\right)}}^{{2}}}} and tan(x)=1a(asec(x))a2{\tan{{\left({x}\right)}}}=\frac{{1}}{{a}}\sqrt{{{\left({a}{\sec{{\left({x}\right)}}}\right)}-{{a}}^{{2}}}} (since integral is indefinite, we can drop absolute value bars, but this can't be done in definite integral). Notice similarity with above roots.

In general:

  1. If you have a2x2\sqrt{{{{a}}^{{2}}-{{x}}^{{2}}}}, make substitution x=asin(u){x}={\operatorname{asin}{{\left({u}\right)}}}.
  2. If you have x2a2\sqrt{{{{x}}^{{2}}-{{a}}^{{2}}}}, make substitution x=asec(u){x}={a}{\sec{{\left({u}\right)}}}.
  3. If you have x2+a2\sqrt{{{{x}}^{{2}}+{{a}}^{{2}}}}, make substitution x=atan(u){x}={a}{\tan{{\left({u}\right)}}}.

We already made first substitution when discussed Substitution Rule.

However, carefully examine integral: maybe you don't need none of the above substitutions: for example, for integral xx2+a2dx\int{x}\sqrt{{{{x}}^{{2}}+{{a}}^{{2}}}}{d}{x} there is a simpler substitution u=x2+a2{u}={{x}}^{{2}}+{{a}}^{{2}}.

Example 1. Find 4x216xdx\int\frac{\sqrt{{{4}{{x}}^{{2}}-{16}}}}{{x}}{d}{x}

We see similar to above root in numerator, just need to rewrite it a bit: 4x216=2x24\sqrt{{{4}{{x}}^{{2}}-{16}}}={2}\sqrt{{{{x}}^{{2}}-{4}}}.

Now, we are ready to make substitution x=2sec(u){x}={2}{\sec{{\left({u}\right)}}}, then dx=2sec(u)tan(u)du{d}{x}={2}{\sec{{\left({u}\right)}}}{\tan{{\left({u}\right)}}}{d}{u}.

So, 2x24xdx=24sec2(u)42sec(u)2sec(u)tan(u)du={2}\int\frac{\sqrt{{{{x}}^{{2}}-{4}}}}{{x}}{d}{x}={2}\int\frac{\sqrt{{{4}{{\sec}}^{{2}}{\left({u}\right)}-{4}}}}{{{2}{\sec{{\left({u}\right)}}}}}{2}{\sec{{\left({u}\right)}}}{\tan{{\left({u}\right)}}}{d}{u}=

=4tan(u)tan(u)du={4}\int{\left|{\tan{{\left({u}\right)}}}\right|}{\tan{{\left({u}\right)}}}{d}{u}

Since integral is indefinite we will drop absolute value bars: 4tan2(u)du{4}\int{{\tan}}^{{2}}{\left({u}\right)}{d}{u}. We know how to do such integrals (see Trigonometric Integrals note). So, 4tan2(u)du=4(sec2(u)1)du=4(tan(u)u)+C{4}\int{{\tan}}^{{2}}{\left({u}\right)}{d}{u}={4}\int{\left({{\sec}}^{{2}}{\left({u}\right)}-{1}\right)}{d}{u}={4}{\left({\tan{{\left({u}\right)}}}-{u}\right)}+{C}.

To return to old variable we will need to find tan(u){\tan{{\left({u}\right)}}} in terms of x{x}. From our substitution we see that sec(u)=x2{\sec{{\left({u}\right)}}}=\frac{{x}}{{2}}.

Since tan(u)=sec2(u)1{\tan{{\left({u}\right)}}}=\sqrt{{{{\sec}}^{{2}}{\left({u}\right)}-{1}}} then tan(u)=x241=12x24{\tan{{\left({u}\right)}}}=\sqrt{{\frac{{{{x}}^{{2}}}}{{4}}-{1}}}=\frac{{1}}{{2}}\sqrt{{{{x}}^{{2}}-{4}}}.

Since sec(u)=x2{\sec{{\left({u}\right)}}}=\frac{{x}}{{2}} then cos(u)=2x{\cos{{\left({u}\right)}}}=\frac{{2}}{{x}} and u=arccos(2x){u}={\operatorname{arccos}{{\left(\frac{{2}}{{x}}\right)}}} (note that we could express u{u} in terms of x{x} through inverse secant: u=arcsec(x2){u}=\text{arcsec}{\left(\frac{{x}}{{2}}\right)}, people just more familiar with cosines therefore we use inverse cosine).

Finally, 4x216xdx=4(12x24arccos(2x))+C=\int\frac{{\sqrt{{{4}{{x}}^{{2}}-{16}}}}}{{x}}{d}{x}={4}{\left(\frac{{1}}{{2}}\sqrt{{{{x}}^{{2}}-{4}}}-{\operatorname{arccos}{{\left(\frac{{2}}{{x}}\right)}}}\right)}+{C}=

=2(x242arccos(2x))+C={2}{\left(\sqrt{{{{x}}^{{2}}-{4}}}-{2}{\operatorname{arccos}{{\left(\frac{{2}}{{x}}\right)}}}\right)}+{C}.

Now, let's see how to handle absolute value bars in the definite integral.

Example 2. Calculate 244x216xdx{\int_{{2}}^{{4}}}\frac{\sqrt{{{4}{{x}}^{{2}}-{16}}}}{{x}}{d}{x}.

It is same integral as in example 1. First, simplify expression under square root: 224x24xdx{2}{\int_{{2}}^{{4}}}\frac{\sqrt{{{{x}}^{{2}}-{4}}}}{{x}}{d}{x}.

Let x=2sec(u){x}={2}{\sec{{\left({u}\right)}}} then dx=2sec(u)tan(u)du{d}{x}={2}{\sec{{\left({u}\right)}}}{\tan{{\left({u}\right)}}}{d}{u}.

x{x} is changing from 2 to 4, so sec(u){\sec{{\left({u}\right)}}} is changing from 22=1\frac{{2}}{{2}}={1} to 42=2\frac{{4}}{{2}}={2}, that's why cos(u){\cos{{\left({u}\right)}}} is changing from 12\frac{{1}}{{2}} to 1{1} and u is changing from 0 to π3\frac{\pi}{{3}}. Tangent on this interval is positive, so x24=4sec2(u)4=2tan(u)=2tan(u)\sqrt{{{{x}}^{{2}}-{4}}}=\sqrt{{{4}{{\sec}}^{{2}}{\left({u}\right)}-{4}}}={2}{\left|{\tan{{\left({u}\right)}}}\right|}={2}{\tan{{\left({u}\right)}}}.

Note that in determining value of u{u} we took the smallest positive value.

Now, integral becomes 40π3tan2(u)du=40π3(sec2(u)1)du=4(tan(u)u)0π2={4}{\int_{{0}}^{{\frac{\pi}{{3}}}}}{{\tan}}^{{2}}{\left({u}\right)}{d}{u}={4}{\int_{{0}}^{{\frac{\pi}{{3}}}}}{\left({{\sec}}^{{2}}{\left({u}\right)}-{1}\right)}{d}{u}={4}{\left({\tan{{\left({u}\right)}}}-{u}\right)}{{\mid}_{{0}}^{{\frac{\pi}{{2}}}}}=

=4((tan(0)0)(tan(π3)π3))=4(003+π3)=={4}{\left({\left({\tan{{\left({0}\right)}}}-{0}\right)}-{\left({\tan{{\left(\frac{\pi}{{3}}\right)}}}-\frac{{\pi}}{{3}}\right)}\right)}=-{4}{\left({0}-{0}-\sqrt{{{3}}}+\frac{{\pi}}{{3}}\right)}=

=434π3={4}\sqrt{{{3}}}-\frac{{{4}\pi}}{{3}}.

Example 3. Calculate 424x216xdx{\int_{{-{4}}}^{{-{2}}}}\frac{\sqrt{{{4}{{x}}^{{2}}-{16}}}}{{x}}{d}{x}.

It is same integral as in example 1. First, simplify expression under square root: 242x24xdx{2}{\int_{{-{4}}}^{{-{2}}}}\frac{\sqrt{{{{x}}^{{2}}-{4}}}}{{x}}{d}{x}.

Let x=2sec(u){x}={2}{\sec{{\left({u}\right)}}} then dx=2sec(u)tan(u)du{d}{x}={2}{\sec{{\left({u}\right)}}}{\tan{{\left({u}\right)}}}{d}{u}.

x{x} is changing from -4 to -2, so sec(u){\sec{{\left({u}\right)}}} is changing from 42=2\frac{{-{4}}}{{2}}=-{2} to 22=1\frac{{-{2}}}{{2}}=-{1}, that's why cos(u){\cos{{\left({u}\right)}}} is changing from 12-\frac{{1}}{{2}} to 1-{1} and u{u} is changing from 2π3\frac{{{2}\pi}}{{3}} to π\pi.

This means that tangent on this interval is negative, so x24=4sec2(u)4=2tan(u)=2tan(u)\sqrt{{{{x}}^{{2}}-{4}}}=\sqrt{{{4}{{\sec}}^{{2}}{\left({u}\right)}-{4}}}={2}{\left|{\tan{{\left({u}\right)}}}\right|}=-{2}{\tan{{\left({u}\right)}}}.

Note that in determining value of u{u} we took the smallest positive value.

Now, integral becomes 42π3πtan2(u)du=42π3π(sec2(u)1)du=4(tan(u)u)2π3π=-{4}{\int_{{\frac{{{2}\pi}}{{3}}}}^{{\pi}}}{{\tan}}^{{2}}{\left({u}\right)}{d}{u}=-{4}{\int_{{\frac{{{2}\pi}}{{3}}}}^{{\pi}}}{\left({{\sec}}^{{2}}{\left({u}\right)}-{1}\right)}{d}{u}={4}{\left({\tan{{\left({u}\right)}}}-{u}\right)}{{\mid}_{{\frac{{{2}\pi}}{{3}}}}^{{\pi}}}=

=4((tan(π)π)(tan(2π3)2π3))=4(0π+3+2π3)==-{4}{\left({\left({\tan{{\left(\pi\right)}}}-\pi\right)}-{\left({\tan{{\left(\frac{{{2}\pi}}{{3}}\right)}}}-\frac{{{2}\pi}}{{3}}\right)}\right)}=-{4}{\left({0}-\pi+\sqrt{{{3}}}+\frac{{{2}\pi}}{{3}}\right)}=

=4π343=\frac{{{4}\pi}}{{3}}-{4}\sqrt{{{3}}}.

Example 4. Calculate 1x24x2dx\int\frac{{1}}{{{{x}}^{{2}}\sqrt{{{4}-{{x}}^{{2}}}}}}{d}{x}.

We will need substitution 2 here: x=2sin(u){x}={2}{\sin{{\left({u}\right)}}} then dx=2cos(u)du{d}{x}={2}{\cos{{\left({u}\right)}}}{d}{u} and integral can be rewritten as:

14sin2(u)44sin2(u)2cos(u)du=141sin2(u)cos(u)cos(u)du\int\frac{{1}}{{{4}{{\sin}}^{{2}}{\left({u}\right)}\sqrt{{{4}-{4}{{\sin}}^{{2}}{\left({u}\right)}}}}}{2}{\cos{{\left({u}\right)}}}{d}{u}=\frac{{1}}{{4}}\int\frac{{1}}{{{{\sin}}^{{2}}{\left({u}\right)}{\left|{\cos{{\left({u}\right)}}}\right|}}}{\cos{{\left({u}\right)}}}{d}{u}.

Since integral is indefinite, we can drop absolute value bars (we assume that cosine is positive):

141sin2(u)du=14csc2(u)du=14cot(u)+C\frac{{1}}{{4}}\int\frac{{1}}{{{{\sin}}^{{2}}{\left({u}\right)}}}{d}{u}=\frac{{1}}{{4}}\int{{\csc}}^{{2}}{\left({u}\right)}{d}{u}=-\frac{{1}}{{4}}{\cot{{\left({u}\right)}}}+{C}.

Now, we will need to return to old variables.

Since x=2sin(u){x}={2}{\sin{{\left({u}\right)}}} then sin(u)=x2{\sin{{\left({u}\right)}}}=\frac{{x}}{{2}} and cos(u)=1x24=124x2{\cos{{\left({u}\right)}}}=\sqrt{{{1}-\frac{{{{x}}^{{2}}}}{{4}}}}=\frac{{1}}{{2}}\sqrt{{{4}-{{x}}^{{2}}}}, so cot(u)=cos(u)sin(u)=124x212x=4x2x{\cot{{\left({u}\right)}}}=\frac{{\cos{{\left({u}\right)}}}}{{\sin{{\left({u}\right)}}}}=\frac{{\frac{{1}}{{2}}\sqrt{{{4}-{{x}}^{{2}}}}}}{{\frac{{1}}{{2}}{x}}}=\frac{{\sqrt{{{4}-{{x}}^{{2}}}}}}{{x}}.

Finally, 1x24x2dx=4x24x+C\int\frac{{1}}{{{{x}}^{{2}}\sqrt{{{4}-{{x}}^{{2}}}}}}{d}{x}=-\frac{{\sqrt{{{4}-{{x}}^{{2}}}}}}{{{4}{x}}}+{C}.

Example 5. Calculate 02x2(x2+4)52dx{\int_{{0}}^{{2}}}\frac{{{{x}}^{{2}}}}{{{\left({{x}}^{{2}}+{4}\right)}}^{{\frac{{5}}{{2}}}}}{d}{x}

Since (x2+4)52=(x2+4)5{{\left({{x}}^{{2}}+{4}\right)}}^{{\frac{{5}}{{2}}}}={{\left(\sqrt{{{{x}}^{{2}}+{4}}}\right)}}^{{5}} then make substitution number 3: x=2tan(u){x}={2}{\tan{{\left({u}\right)}}}. In this case dx=2sec2(u)du{d}{x}={2}{{\sec}}^{{2}}{\left({u}\right)}{d}{u}.

So, integral can be rewritten as 024tan2(u)(4tan2(u)+4)52sec2(u)du=024tan2(u)(2sec(u))52sec2(u)du{\int_{{0}}^{{2}}}\frac{{{4}{{\tan}}^{{2}}{\left({u}\right)}}}{{{\left(\sqrt{{{4}{{\tan}}^{{2}}{\left({u}\right)}+{4}}}\right)}}^{{5}}}{2}{{\sec}}^{{2}}{\left({u}\right)}{d}{u}={\int_{{0}}^{{2}}}\frac{{{4}{{\tan}}^{{2}}{\left({u}\right)}}}{{{\left({2}{\left|{\sec{{\left({u}\right)}}}\right|}\right)}}^{{5}}}{2}{{\sec}}^{{2}}{\left({u}\right)}{d}{u}.

Since x{x} is changing from 0 to 2 then tan(u){\tan{{\left({u}\right)}}} is changing from 02=0\frac{{0}}{{2}}={0} to 22=1\frac{{2}}{{2}}={1}. This means that u{u} is changing from 0{0} to π4\frac{\pi}{{4}}. This means that sec(u){\sec{{\left({u}\right)}}} is positive on this interval, so sec(u)=sec(u){\left|{\sec{{\left({u}\right)}}}\right|}={\sec{{\left({u}\right)}}}.

So, integral becomes 140π4tan2(u)sec3(u)du\frac{{1}}{{4}}{\int_{{0}}^{{\frac{\pi}{{4}}}}}\frac{{{{\tan}}^{{2}}{\left({u}\right)}}}{{{{\sec}}^{{3}}{\left({u}\right)}}}{d}{u}.

To calculate this integral it is better to convert it to sines and cosines: 140π4tan2(u)sec3(u)du=140π4sin2(u)cos(u)du\frac{{1}}{{4}}{\int_{{0}}^{{\frac{\pi}{{4}}}}}\frac{{{{\tan}}^{{2}}{\left({u}\right)}}}{{{{\sec}}^{{3}}{\left({u}\right)}}}{d}{u}=\frac{{1}}{{4}}{\int_{{0}}^{{\frac{\pi}{{4}}}}}{{\sin}}^{{2}}{\left({u}\right)}{\cos{{\left({u}\right)}}}{d}{u}.

Let t=sin(u){t}={\sin{{\left({u}\right)}}} then dt=cos(u)du{d}{t}={\cos{{\left({u}\right)}}}{d}{u}. Since u is changing from 0 to π4\frac{{\pi}}{{4}} then t{t} is changing from sin(0)=0 to sin(π4)=12{\sin{{\left(\frac{\pi}{{4}}\right)}}}=\frac{{1}}{\sqrt{{{2}}}}.

And integral becomes 14012t2dt=112t3012=112(1(2)303)=1242\frac{{1}}{{4}}{\int_{{0}}^{{\frac{{1}}{\sqrt{{{2}}}}}}}{{t}}^{{2}}{d}{t}=\frac{{1}}{{12}}{{t}}^{{3}}{{\mid}_{{0}}^{{\frac{{1}}{\sqrt{{{2}}}}}}}=\frac{{1}}{{12}}{\left(\frac{{1}}{{{\left(\sqrt{{{2}}}\right)}}^{{3}}}-{{0}}^{{3}}\right)}=\frac{{1}}{{{24}\sqrt{{{2}}}}}.

Example 6. Evaluate x2+4x+13dx\int\sqrt{{{{x}}^{{2}}+{4}{x}+{13}}}{d}{x}.

It seems that this integral can't be evaluated using above substitution. However, recall that any quadratic function ax2+bx+c{a}{{x}}^{{2}}+{b}{x}+{c} can be transformed into a(x+d)2+e{a}{{\left({x}+{d}\right)}}^{{2}}+{e} by completing a square.

So, x2+4x+13=x2+4x+4+9=(x+2)2+9{{x}}^{{2}}+{4}{x}+{13}={{x}}^{{2}}+{4}{x}+{4}+{9}={{\left({x}+{2}\right)}}^{{2}}+{9}.

This is similar to x2+a2\sqrt{{{{x}}^{{2}}+{{a}}^{{2}}}} except x+2{x}+{2} term. But this doesn't matter. Let x+2=3tan(u){x}+{2}={3}{\tan{{\left({u}\right)}}}. Then dx=3sec2(u)du{d}{x}={3}{{\sec}}^{{2}}{\left({u}\right)}{d}{u}.

Integral, thus, becomes 9tan2(u)+93sec2(u)du=3sec(u)3sec2(u)du=9sec3(u)du\int\sqrt{{{9}{{\tan}}^{{2}}{\left({u}\right)}+{9}}}\cdot{3}{{\sec}}^{{2}}{\left({u}\right)}{d}{u}=\int{3}{\left|{\sec{{\left({u}\right)}}}\right|}\cdot{3}{{\sec}}^{{2}}{\left({u}\right)}{d}{u}={9}\int{{\sec}}^{{3}}{\left({u}\right)}{d}{u}.

This integral was found in Trigonometric Integrals note: 9sec3(u)du=92(sec(u)tan(u)+lnsec(u)+tan(u))+C{9}\int{{\sec}}^{{3}}{\left({u}\right)}{d}{u}=\frac{{9}}{{2}}{\left({\sec{{\left({u}\right)}}}{\tan{{\left({u}\right)}}}+{\ln}{\left|{\sec{{\left({u}\right)}}}+{\tan{{\left({u}\right)}}}\right|}\right)}+{C}.

Since tan(u)=x+23{\tan{{\left({u}\right)}}}=\frac{{{x}+{2}}}{{3}} then sec(u)=(x+2)29+1=13x2+4x+13{\sec{{\left({u}\right)}}}=\sqrt{{\frac{{{{\left({x}+{2}\right)}}^{{2}}}}{{9}}+{1}}}=\frac{{1}}{{3}}\sqrt{{{{x}}^{{2}}+{4}{x}+{13}}}.

Finally, x2+4x+13dx=\int\sqrt{{{{x}}^{{2}}+{4}{x}+{13}}}{d}{x}=

=92(13x2+4x+13x+23+lnx+23+(x+23)2+1)+C==\frac{{9}}{{2}}{\left(\frac{{1}}{{3}}\sqrt{{{{x}}^{{2}}+{4}{x}+{13}}}\cdot\frac{{{x}+{2}}}{{3}}+{\ln}{\left|\frac{{{x}+{2}}}{{3}}+\sqrt{{{{\left(\frac{{{x}+{2}}}{{3}}\right)}}^{{2}}+{1}}}\right|}\right)}+{C}=

=12(x2+4x+13(x+2)+9arcsinh(x+23))+C=\frac{{1}}{{2}}{\left(\sqrt{{{{x}}^{{2}}+{4}{x}+{13}}}{\left({x}+{2}\right)}+{9}\text{arcsinh}{\left(\frac{{{x}+{2}}}{{3}}\right)}\right)}+{C}.

Example 7. Evaluate ex1dx\int\sqrt{{{{e}}^{{x}}-{1}}}{d}{x}.

Again expression under the square root is not like the above 3 expressions. However, note that ex1=(ex2)21\sqrt{{{{e}}^{{x}}-{1}}}=\sqrt{{{{\left({{e}}^{{\frac{{x}}{{2}}}}\right)}}^{{2}}-{1}}}. And it is similar to substitution 2. So, let ex2=sec(u){{e}}^{{\frac{{x}}{{2}}}}={\sec{{\left({u}\right)}}} then 12ex2dx=sec(u)tan(u)du\frac{{1}}{{2}}{{e}}^{{\frac{{x}}{{2}}}}{d}{x}={\sec{{\left({u}\right)}}}{\tan{{\left({u}\right)}}}{d}{u}. We need to express dx{d}{x} in terms of u{u} only.

Since ex2=sec(u){{e}}^{{\frac{{x}}{{2}}}}={\sec{{\left({u}\right)}}} then 12sec(u)dx=sec(u)tan(u)du\frac{{1}}{{2}}{\sec{{\left({u}\right)}}}{d}{x}={\sec{{\left({u}\right)}}}{\tan{{\left({u}\right)}}}{d}{u} or dx=2tan(u)du{d}{x}={2}{\tan{{\left({u}\right)}}}{d}{u}.

Integral now becomes sec2(u)12tan(u)du=2tan(u)tan(u)du\int\sqrt{{{{\sec}}^{{2}}{\left({u}\right)}-{1}}}\cdot{2}{\tan{{\left({u}\right)}}}{d}{u}={2}\int{\left|{\tan{{\left({u}\right)}}}\right|}{\tan{{\left({u}\right)}}}{d}{u}.

Since integral is indefinite, we drop absolute value bars: 2tan2(u)du=2(sec2(u)1)du=2(tan(u)u)+C{2}\int{{\tan}}^{{2}}{\left({u}\right)}{d}{u}={2}\int{\left({{\sec}}^{{2}}{\left({u}\right)}-{1}\right)}{d}{u}={2}{\left({\tan{{\left({u}\right)}}}-{u}\right)}+{C}.

Since sec(u)=ex2{\sec{{\left({u}\right)}}}={{e}}^{{\frac{{x}}{{2}}}} then tan(u)=(ex2)21=ex1{\tan{{\left({u}\right)}}}=\sqrt{{{{\left({{e}}^{{\frac{{x}}{{2}}}}\right)}}^{{2}}-{1}}}=\sqrt{{{{e}}^{{x}}-{1}}}.

And u{u} is either arcsec(ex2)\text{arcsec}{\left({{e}}^{{\frac{{x}}{{2}}}}\right)} or arctan(ex1){\operatorname{arctan}{{\left(\sqrt{{{{e}}^{{x}}-{1}}}\right)}}} (we choose second option).

So, ex1dx=2(ex1arctan(ex1))+C\int\sqrt{{{{e}}^{{x}}-{1}}}{d}{x}={2}{\left(\sqrt{{{{e}}^{{x}}-{1}}}-{\operatorname{arctan}{{\left(\sqrt{{{{e}}^{{x}}-{1}}}\right)}}}\right)}+{C}.

Note, that this integral can be solved another way: with double substitution; first substitution is u=ex{u}={{e}}^{{x}} and second is t=u1{t}=\sqrt{{{u}-{1}}}.

We have seen (last two examples) that some integrals can be converted into integrals that can be solved using trigonometric substitution described above.