Electrical Circuits

The basic equation governing the amount of current I{I} (in amperes) in a simple RL circuit consisting of a resistance R{R} (in ohms), an inductance L{L} (in henries), and an electromotive force (abbreviated as 'emf') E{E} (in volts) is dIdt+RLI=EL\frac{{{d}{I}}}{{{d}{t}}}+\frac{{R}}{{L}}{I}=\frac{{E}}{{L}}.
For an RC circuit consisting of a resistance, a capacitance C{C} (in farads), an emf, and no inductance, the equation governing the amount of electrical charge q{q} (in coulombs) on the capacitor is dqdt+1RCq=ER\frac{{{d}{q}}}{{{d}{t}}}+\frac{{1}}{{{R}{C}}}{q}=\frac{{E}}{{R}}. The relationship between q{q} and I{I} is I=dqdt{I}=\frac{{{d}{q}}}{{{d}{t}}}.

Example 1. An RL circuit has an emf of 5 volts, a resistance of 50 ohms, an inductance of 1 henry, and no initial current. Find the current in the circuit at any time t{t}.

Here, E=5{E}={5}, R=50{R}={50}, and L=1{L}={1}; hence, the differential equation becomes dIdt+50I=5\frac{{{d}{I}}}{{{d}{t}}}+{50}{I}={5}. This is a linear equation; its solution is I=ce50t+110{I}={c}{{e}}^{{-{50}{t}}}+\frac{{1}}{{10}}.

At t=0{t}={0}, I=0{I}={0}; thus, 0=ce500+110{0}={c}{{e}}^{{-{50}\cdot{0}}}+\frac{{1}}{{10}}, or c=110{c}=-\frac{{1}}{{10}}. The current at any time, then, isI=110e50t+110{I}=-\frac{{1}}{{10}}{{e}}^{{-{50}{t}}}+\frac{{1}}{{10}}.

The quantity 110e50t-\frac{{1}}{{10}}{{e}}^{{-{50}{t}}} is called transient current, since this quantity goes to zero ("dies out") as t{t}\to\infty.

The quantity 110\frac{{1}}{{10}} is called steady-state current. As t{t}\to\infty, the current I{I} approaches the value of steady-state current.

Let's work another helpful example.

Example 2. An RC circuit has an emf of 300cos(2t){300}{\cos{{\left({2}{t}\right)}}} volts, a resistance of 150 ohms, a capacitance of 1600\frac{{1}}{{600}} farad, and an initial charge on the capacitor of 5 coulombs. Find the charge on the capacitor at any time t{t} and the steady-state current.

Here, E=300cos(2t){E}={300}{\cos{{\left({2}{t}\right)}}}, R=150{R}={150}, and C=1600{C}=\frac{{1}}{{600}}.

So, dqdt+4q=2cos(2t)\frac{{{d}{q}}}{{{d}{t}}}+{4}{q}={2}{\cos{{\left({2}{t}\right)}}}. This is a linear differential equation. It can be rewritten as dqdte4t+4e4tq=2e4tcos(2t)\frac{{{d}{q}}}{{{d}{t}}}{{e}}^{{{4}{t}}}+{4}{{e}}^{{{4}{t}}}{q}={2}{{e}}^{{{4}{t}}}{\cos{{\left({2}{t}\right)}}}, or d(qe4t)dt=2e4tcos(2t)\frac{{{d}{\left({q}{{e}}^{{{4}{t}}}\right)}}}{{{d}{t}}}={2}{{e}}^{{{4}{t}}}{\cos{{\left({2}{t}\right)}}}.

Integrating both sides gives qe4t=(2e4tcos(2t))dt{q}{{e}}^{{{4}{t}}}=\int{\left({2}{{e}}^{{{4}{t}}}{\cos{{\left({2}{t}\right)}}}\right)}{d}{t}. Using integration by parts, we obtain that qe4t=c+e4t5(sin(2t)+2cos(2t)){q}{{e}}^{{{4}{t}}}={c}+\frac{{{{e}}^{{{4}{t}}}}}{{5}}{\left({\sin{{\left({2}{t}\right)}}}+{2}{\cos{{\left({2}{t}\right)}}}\right)}.

The charge on the capacitor at any time t{t} is q=ce4t+15(sin(2t)+2cos(2t)){q}={c}{{e}}^{{-{4}{t}}}+\frac{{1}}{{5}}{\left({\sin{{\left({2}{t}\right)}}}+{2}{\cos{{\left({2}{t}\right)}}}\right)}.

Since q=5{q}={5} when t=0{t}={0}, we have that 5=ce40+15(sin(20)+2cos(20)){5}={c}{{e}}^{{-{4}\cdot{0}}}+\frac{{1}}{{5}}{\left({\sin{{\left({2}\cdot{0}\right)}}}+{2}\cdot{\cos{{\left({2}\cdot{0}\right)}}}\right)}, or c=235{c}=\frac{{23}}{{5}}.

Thus, q=15(23e4t+sin(2t)+2cos(2t)){q}=\frac{{1}}{{5}}{\left({23}{{e}}^{{-{4}{t}}}+{\sin{{\left({2}{t}\right)}}}+{2}{\cos{{\left({2}{t}\right)}}}\right)}.

Next, since I=dqdt{I}=\frac{{{d}{q}}}{{{d}{t}}}, we have that I=15(92e4t+2cos(2t)4sin(2t)){I}=\frac{{1}}{{5}}{\left(-{92}{{e}}^{{-{4}{t}}}+{2}{\cos{{\left({2}{t}\right)}}}-{4}{\sin{{\left({2}{t}\right)}}}\right)}, and the steady-state current is Is=15(2cos(2t)4sin(2t)){I}_{{s}}=\frac{{1}}{{5}}{\left({2}{\cos{{\left({2}{t}\right)}}}-{4}{\sin{{\left({2}{t}\right)}}}\right)} (925e4t-\frac{{92}}{{5}}{{e}}^{{-{4}{t}}} is transient because this quantity goes to zero as t{t}\to\infty, unlike Is{I}_{{s}}).