Inverse Laplace Transform

As has been seen previously, the formula for the Laplace transform is F(s)=L(f(t)){F}{\left({s}\right)}={L}{\left({f{{\left({t}\right)}}}\right)}; in other words, we are given a function f(t){f{{\left({t}\right)}}} and we need to find F(s){F}{\left({s}\right)}. The inverse Laplace transform is the operation of finding f(t){f{{\left({t}\right)}}} given F(s){F}{\left({s}\right)}.

The operation of the Laplace transform is quite straightforward: we need to calculate the imporper integral and we are done. Finding the inverse Laplace transform is more tedious and complicated. The table of Laplace transforms is very useful for this.

Property. Linearity of the inverse Laplace transform: L1(aF(s)+bG(s))=aL1(F(s))+bL1(G(s))=af(t)+bg(t){{L}}^{{-{{1}}}}{\left({a}{F}{\left({s}\right)}+{b}{G}{\left({s}\right)}\right)}={a}{{L}}^{{-{{1}}}}{\left({F}{\left({s}\right)}\right)}+{b}{{L}}^{{-{{1}}}}{\left({G}{\left({s}\right)}\right)}={a}{f{{\left({t}\right)}}}+{b}{g{{\left({t}\right)}}}, where a{a} and b{b} are some constants.

Note that there can be more than 2 terms, and linearity will still hold.

Proof.

From the linear property of the Laplace transform, we have that aF(s)+bG(s)=L(af(t)+bf(t)){a}{F}{\left({s}\right)}+{b}{G}{\left({s}\right)}={L}{\left({a}{f{{\left({t}\right)}}}+{b}{f{{\left({t}\right)}}}\right)}. Taking the inverse Laplace transform of both sides yields

L1(aF(s)+bG(s))=L1(L(af(t)+bg(t))){{L}}^{{-{{1}}}}{\left({a}{F}{\left({s}\right)}+{b}{G}{\left({s}\right)}\right)}={{L}}^{{-{{1}}}}{\left({L}{\left({a}{f{{\left({t}\right)}}}+{b}{g{{\left({t}\right)}}}\right)}\right)},

or

L1(aF(s)+bG(s))=af(t)+bg(t){{L}}^{{-{{1}}}}{\left({a}{F}{\left({s}\right)}+{b}{G}{\left({s}\right)}\right)}={a}{f{{\left({t}\right)}}}+{b}{g{{\left({t}\right)}}}, since L1(L(f(t)))=f(t){{L}}^{{-{{1}}}}{\left({L}{\left({f{{\left({t}\right)}}}\right)}\right)}={f{{\left({t}\right)}}}.

This completes the proof.

Let's go through a couple of examples.

Example 1. Calculate L1(5s+2s2+5s2+1+1s+3){{L}}^{{-{{1}}}}{\left(\frac{{5}}{{s}}+\frac{{2}}{{{s}-{2}}}+\frac{{5}}{{{{s}}^{{2}}+{1}}}+\frac{{1}}{{{s}+{3}}}\right)}.

L1(5s+2s2+5s2+1+1s+3)=5L1(1s)+2L1(1s2)+5L1(1s2+1+1s(3))=5(1)+2e2t+5sin(t)+e3t=5+2e2t+5sin(t)+e3t{{L}}^{{-{{1}}}}{\left(\frac{{5}}{{s}}+\frac{{2}}{{{s}-{2}}}+\frac{{5}}{{{{s}}^{{2}}+{1}}}+\frac{{1}}{{{s}+{3}}}\right)}={5}{{L}}^{{-{{1}}}}{\left(\frac{{1}}{{s}}\right)}+{2}{{L}}^{{-{{1}}}}{\left(\frac{{1}}{{{s}-{2}}}\right)}+{5}{{L}}^{{-{{1}}}}{\left(\frac{{1}}{{{{s}}^{{2}}+{1}}}+\frac{{1}}{{{s}-{\left(-{3}\right)}}}\right)}={5}\cdot{\left({1}\right)}+{2}{{e}}^{{{2}{t}}}+{5}{\sin{{\left({t}\right)}}}+{{e}}^{{-{3}{t}}}={5}+{2}{{e}}^{{{2}{t}}}+{5}{\sin{{\left({t}\right)}}}+{{e}}^{{-{3}{t}}}

The above inverse Laplace transforms can be seen in the table of Laplace transforms.

Now, let's see another example.

Example 2. Calculate L1(s+1s2+3+15s7){{L}}^{{-{{1}}}}{\left(\frac{{{s}+{1}}}{{{{s}}^{{2}}+{3}}}+\frac{{1}}{{{5}{s}-{7}}}\right)}.

L1(s+1s2+3)=L1(ss2+3)+L1(1s2+3)+L1(15(s75)){{L}}^{{-{{1}}}}{\left(\frac{{{s}+{1}}}{{{{s}}^{{2}}+{3}}}\right)}={{L}}^{{-{{1}}}}{\left(\frac{{s}}{{{{s}}^{{2}}+{3}}}\right)}+{{L}}^{{-{{1}}}}{\left(\frac{{1}}{{{{s}}^{{2}}+{3}}}\right)}+{{L}}^{{-{{1}}}}{\left(\frac{{1}}{{{5}{\left({s}-\frac{{7}}{{5}}\right)}}}\right)}.

On this stage, look at the denominator of the first two terms. Since 1s2+3=1s2+(3)2\frac{{1}}{{{{s}}^{{2}}+{3}}}=\frac{{1}}{{{{s}}^{{2}}+{{\left(\sqrt{{{3}}}\right)}}^{{2}}}}, it seems that the first term should be cos(3t){\cos{{\left(\sqrt{{{3}}}{t}\right)}}} and the seond term is cos(3t){\cos{{\left(\sqrt{{{3}}}{t}\right)}}}. However, 3\sqrt{{{3}}} is missing in the numerator for sin(3t){\sin{{\left(\sqrt{{{3}}}{t}\right)}}}. So,

L1(ss2+3)+L1(1s2+3)+L1(15(s75))=cos(3t)+L1(331s2+3)+15L1(1s75)=cos(3t)+13L1(3s2+3)+15e75t=cos(3t)+13sin(3t)+15e75t{{L}}^{{-{{1}}}}{\left(\frac{{s}}{{{{s}}^{{2}}+{3}}}\right)}+{{L}}^{{-{{1}}}}{\left(\frac{{1}}{{{{s}}^{{2}}+{3}}}\right)}+{{L}}^{{-{{1}}}}{\left(\frac{{1}}{{{5}{\left({s}-\frac{{7}}{{5}}\right)}}}\right)}={\cos{{\left(\sqrt{{{3}}}{t}\right)}}}+{{L}}^{{-{{1}}}}{\left(\frac{\sqrt{{{3}}}}{\sqrt{{{3}}}}\frac{{1}}{{{{s}}^{{2}}+{3}}}\right)}+\frac{{1}}{{5}}{{L}}^{{-{{1}}}}{\left(\frac{{1}}{{{s}-\frac{{7}}{{5}}}}\right)}={\cos{{\left(\sqrt{{{3}}}{t}\right)}}}+\frac{{1}}{\sqrt{{{3}}}}{{L}}^{{-{{1}}}}{\left(\frac{{\sqrt{{{3}}}}}{{{{s}}^{{2}}+{3}}}\right)}+\frac{{1}}{{5}}{{e}}^{{\frac{{7}}{{5}}{t}}}={\cos{{\left(\sqrt{{{3}}}{t}\right)}}}+\frac{{1}}{\sqrt{{{3}}}}{\sin{{\left(\sqrt{{{3}}}{t}\right)}}}+\frac{{1}}{{5}}{{e}}^{{\frac{{7}}{{5}}{t}}}

The denominator is the key part in taking the inverse transform. Identify what function are you dealing with based on the denominator. If there is more than one possibility, examine the numerator. Then correct the numerator to get the form you need.

Example 3. Calculate L1(7s5s2+2s+5){{L}}^{{-{{1}}}}{\left(\frac{{{7}{s}-{5}}}{{{{s}}^{{2}}+{2}{s}+{5}}}\right)}.

Again, examine the denominator: s2+2s+5=s2+2s+1+4=(s+1)2+22=(s(1))2+22{{s}}^{{2}}+{2}{s}+{5}={{s}}^{{2}}+{2}{s}+{1}+{4}={{\left({s}+{1}\right)}}^{{2}}+{{2}}^{{2}}={{\left({s}-{\left(-{1}\right)}\right)}}^{{2}}+{{2}}^{{2}}.

Seems like we are dealing with either etcos(2t){{e}}^{{-{t}}}{\cos{{\left({2}{t}\right)}}} or etcos(2t){{e}}^{{-{t}}}{\cos{{\left({2}{t}\right)}}}. Now, take a look at the numerator. It is 7s5{7}{s}-{5}, or 7(s57){7}{\left({s}-\frac{{5}}{{7}}\right)}. For etcos(2t){{e}}^{{-{t}}}{\cos{{\left({2}{t}\right)}}}, we need s+1{s}+{1} in the numerator, and for etsin(2t){{e}}^{{-{t}}}{\sin{{\left({2}{t}\right)}}}, we need 2{2} in the numerator; so, rewrite the numerator as 7(s+1157)=7(s+1127)=7(s+1)12=7(s+1)26{7}{\left({s}+{1}-{1}-\frac{{5}}{{7}}\right)}={7}{\left({s}+{1}-\frac{{12}}{{7}}\right)}={7}{\left({s}+{1}\right)}-{12}={7}{\left({s}+{1}\right)}-{2}\cdot{6}.

Thus,

L1(7s5s2+2s+5)=L1(7(s+1)(s+1)2+22)L1(26(s+1)+22)=7L1(s+1(s+1)2+22)6L1(2(s+1)+22)=7etcos(2t)6etsin(2t)=et(7cos(2t)6sin(2t)){{L}}^{{-{{1}}}}{\left(\frac{{{7}{s}-{5}}}{{{{s}}^{{2}}+{2}{s}+{5}}}\right)}={{L}}^{{-{{1}}}}{\left(\frac{{{7}{\left({s}+{1}\right)}}}{{{{\left({s}+{1}\right)}}^{{2}}+{{2}}^{{2}}}}\right)}-{{L}}^{{-{{1}}}}{\left(\frac{{{2}\cdot{6}}}{{{\left({s}+{1}\right)}+{{2}}^{{2}}}}\right)}={7}{{L}}^{{-{{1}}}}{\left(\frac{{{s}+{1}}}{{{{\left({s}+{1}\right)}}^{{2}}+{{2}}^{{2}}}}\right)}-{6}{{L}}^{{-{{1}}}}{\left(\frac{{2}}{{{\left({s}+{1}\right)}+{{2}}^{{2}}}}\right)}={7}{{e}}^{{-{t}}}{\cos{{\left({2}{t}\right)}}}-{6}{{e}}^{{-{t}}}{\sin{{\left({2}{t}\right)}}}={{e}}^{{-{t}}}{\left({7}{\cos{{\left({2}{t}\right)}}}-{6}{\sin{{\left({2}{t}\right)}}}\right)}


Let's proceed to the next example.

Example 4. Calculate L1(s2s24s9){{L}}^{{-{{1}}}}{\left(\frac{{s}}{{{2}{{s}}^{{2}}-{4}{s}-{9}}}\right)}.

Examine the denominator: 2s24s9=2(s22s92)=2(s22s+1192)=2((s1)2112){2}{{s}}^{{2}}-{4}{s}-{9}={2}{\left({{s}}^{{2}}-{2}{s}-\frac{{9}}{{2}}\right)}={2}{\left({{s}}^{{2}}-{2}{s}+{1}-{1}-\frac{{9}}{{2}}\right)}={2}{\left({{\left({s}-{1}\right)}}^{{2}}-\frac{{11}}{{2}}\right)}.

So, we are dealing with etsinh(112t){{e}}^{{t}}{\sinh{{\left(\sqrt{{\frac{{11}}{{2}}}}{t}\right)}}} and etcosh(112t){{e}}^{{t}}{\cosh{{\left(\sqrt{{\frac{{11}}{{2}}}}{t}\right)}}}. For the term involving cosh{\cosh{}}, we need s1{s}-{1} in the numerator, and for the term involving sinh{\sinh{}}, we need 112\sqrt{{\frac{{11}}{{2}}}}; so, rewrite the numerator as s=s1+1=(s1)+211112{s}={s}-{1}+{1}={\left({s}-{1}\right)}+\sqrt{{\frac{{2}}{{11}}}}\cdot\sqrt{{\frac{{11}}{{2}}}}.

L1(s2s24s9)=L1((s1)+2111122((s1)2(112)2))=12L1(s1(s1)2+(112)2)+122L1(112(s1)2(112)2)=12etcosh(112t)+122etsinh(112t)=et22(22sinh(112t)+11cosh(112t)){{L}}^{{-{{1}}}}{\left(\frac{{s}}{{{2}{{s}}^{{2}}-{4}{s}-{9}}}\right)}={{L}}^{{-{{1}}}}{\left(\frac{{{\left({s}-{1}\right)}+\sqrt{{\frac{{2}}{{11}}}}\cdot\sqrt{{\frac{{11}}{{2}}}}}}{{{2}{\left({{\left({s}-{1}\right)}}^{{2}}-{{\left(\sqrt{{\frac{{11}}{{2}}}}\right)}}^{{2}}\right)}}}\right)}=\frac{{1}}{{2}}{{L}}^{{-{{1}}}}{\left(\frac{{{s}-{1}}}{{{{\left({s}-{1}\right)}}^{{2}}+{{\left(\sqrt{{\frac{{11}}{{2}}}}\right)}}^{{2}}}}\right)}+\sqrt{{\frac{{1}}{{22}}}}{{L}}^{{-{{1}}}}{\left(\frac{{\sqrt{{\frac{{11}}{{2}}}}}}{{{{\left({s}-{1}\right)}}^{{2}}-{{\left(\sqrt{{\frac{{11}}{{2}}}}\right)}}^{{2}}}}\right)}=\frac{{1}}{{2}}{{e}}^{{t}}{\cosh{{\left(\sqrt{{\frac{{11}}{{2}}}}{t}\right)}}}+\sqrt{{\frac{{1}}{{22}}}}{{e}}^{{t}}{\sinh{{\left(\sqrt{{\frac{{11}}{{2}}}}{t}\right)}}}=\frac{{{e}}^{{t}}}{{22}}{\left(\sqrt{{{22}}}{\sinh{{\left(\sqrt{{\frac{{11}}{{2}}}}{t}\right)}}}+{11}{\cosh{{\left(\sqrt{{\frac{{11}}{{2}}}}{t}\right)}}}\right)}

The next examples are those that you will be dealing with most often. They require the knowledge of partial fraction decomposition.

Example 5. Calculate L1(s+2(s+3)(s1)){{L}}^{{-{{1}}}}{\left(\frac{{{s}+{2}}}{{{\left({s}+{3}\right)}{\left({s}-{1}\right)}}}\right)}.

Looking at the denominator, we see that it has the terms s+3{s}+{3} and s1{s}-{1}, and it looks like that inverse transform will contain e3t{{e}}^{{-{3}{t}}} and et{{e}}^{{t}}.

However, to do that, we need to split the "product" into sum.

To do this, assume that s+2(s+3)(s1)=As+3+Bs1\frac{{{s}+{2}}}{{{\left({s}+{3}\right)}{\left({s}-{1}\right)}}}=\frac{{A}}{{{s}+{3}}}+\frac{{B}}{{{s}-{1}}}, where A{A} and B{B} are unknown constants.

Then,

As+3+Bs1=A(s1)+B(s+3)(s1)(s+3)=s(A+B)A+3B(s1)(s+3)\frac{{A}}{{{s}+{3}}}+\frac{{B}}{{{s}-{1}}}=\frac{{{A}{\left({s}-{1}\right)}+{B}{\left({s}+{3}\right)}}}{{{\left({s}-{1}\right)}{\left({s}+{3}\right)}}}=\frac{{{s}{\left({A}+{B}\right)}-{A}+{3}{B}}}{{{\left({s}-{1}\right)}{\left({s}+{3}\right)}}}.

And this must equal s+2(s+3)(s1)\frac{{{s}+{2}}}{{{\left({s}+{3}\right)}{\left({s}-{1}\right)}}}; so, we obtain following system:

{A+B=1A+3B=2{\left\{\begin{array}{c}{A}+{B}={1}\\-{A}+{3}{B}={2}\\ \end{array}\right.}.

It has the solution A=14{A}=\frac{{1}}{{4}} B=34{B}=\frac{{3}}{{4}} (for steps, see system of linear equations calculator).

So, s+2(s+3)(s1)=141s+3+341s1\frac{{{s}+{2}}}{{{\left({s}+{3}\right)}{\left({s}-{1}\right)}}}=\frac{{1}}{{4}}\frac{{1}}{{{s}+{3}}}+\frac{{3}}{{4}}\frac{{1}}{{{s}-{1}}}.

This is called partial fraction decomposition.

Finally,

L1(s+2(s+3)(s1))=14L1(1s+3)+34L1(1s1)=14e3t+34et{{L}}^{{-{{1}}}}{\left(\frac{{{s}+{2}}}{{{\left({s}+{3}\right)}{\left({s}-{1}\right)}}}\right)}=\frac{{1}}{{4}}{{L}}^{{-{{1}}}}{\left(\frac{{1}}{{{s}+{3}}}\right)}+\frac{{3}}{{4}}{{L}}^{{-{{1}}}}{\left(\frac{{1}}{{{s}-{1}}}\right)}=\frac{{1}}{{4}}{{e}}^{{-{3}{t}}}+\frac{{3}}{{4}}{{e}}^{{t}}.

Note that we could write the denominator as (s+3)(s1)=s2+2s3=s2+2s+14=(s+1)24=(s+1)222{\left({s}+{3}\right)}{\left({s}-{1}\right)}={{s}}^{{2}}+{2}{s}-{3}={{s}}^{{2}}+{2}{s}+{1}-{4}={{\left({s}+{1}\right)}}^{{2}}-{4}={{\left({s}+{1}\right)}}^{{2}}-{{2}}^{{2}} and solve it like in the previous example.

However, there are problems where this approach wouldn't work.

In general, if you have in the denominator (anxn+an1xn1++a0)k{{\left({a}_{{n}}{{x}}^{{n}}+{a}_{{{n}-{1}}}{{x}}^{{{n}-{1}}}+\ldots+{a}_{{0}}\right)}}^{{k}}, the corresponding term in partial fraction decomposition is An1xn1+An2xn2++A0anxn+an1xn1++a0+An1xn1+An2xn2++A0(anxn+an1xn1++a0)2++An1xn1+An2xn2++A0(anxn+an1xn1++a0)k\frac{{{A}_{{{n}-{1}}}{{x}}^{{{n}-{1}}}+{A}_{{{n}-{2}}}{{x}}^{{{n}-{2}}}+\ldots+{A}_{{0}}}}{{{a}_{{n}}{{x}}^{{n}}+{a}_{{{n}-{1}}}{{x}}^{{{n}-{1}}}+\ldots+{a}_{{0}}}}+\frac{{{A}_{{{n}-{1}}}{{x}}^{{{n}-{1}}}+{A}_{{{n}-{2}}}{{x}}^{{{n}-{2}}}+\ldots+{A}_{{0}}}}{{{\left({a}_{{n}}{{x}}^{{n}}+{a}_{{{n}-{1}}}{{x}}^{{{n}-{1}}}+\ldots+{a}_{{0}}\right)}}^{{2}}}+\ldots+\frac{{{A}_{{{n}-{1}}}{{x}}^{{{n}-{1}}}+{A}_{{{n}-{2}}}{{x}}^{{{n}-{2}}}+\ldots+{A}_{{0}}}}{{{\left({a}_{{n}}{{x}}^{{n}}+{a}_{{{n}-{1}}}{{x}}^{{{n}-{1}}}+\ldots+{a}_{{0}}\right)}}^{{k}}}

In particular,

  1. ax+bAax+b{a}{x}+{b}\to\frac{{A}}{{{a}{x}+{b}}}
  2. ax2+bx+cAx+Bax2+bx+c{a}{{x}}^{{2}}+{b}{x}+{c}\to\frac{{{A}{x}+{B}}}{{{a}{{x}}^{{2}}+{b}{x}+{c}}}
  3. (ax+b)2Aax+b+B(ax+b)2{{\left({a}{x}+{b}\right)}}^{{2}}\to\frac{{A}}{{{a}{x}+{b}}}+\frac{{B}}{{{\left({a}{x}+{b}\right)}}^{{2}}}
  4. (ax2+bx+c)2Ax+Bax2+bx+c+Cx+D(ax2+bx+c)2{{\left({a}{{x}}^{{2}}+{b}{x}+{c}\right)}}^{{2}}\to\frac{{{A}{x}+{B}}}{{{a}{{x}}^{{2}}+{b}{x}+{c}}}+\frac{{{C}{x}+{D}}}{{{\left({a}{{x}}^{{2}}+{b}{x}+{c}\right)}}^{{2}}}

Example 6. Calculate L1(1s2(s+1)2){{L}}^{{-{{1}}}}{\left(\frac{{1}}{{{{s}}^{{2}}{{\left({s}+{1}\right)}}^{{2}}}}\right)}.

The partial fraction decomposition is

1s2(s+1)2=As+Bs2+Cs+1+D(s+1)2\frac{{1}}{{{{s}}^{{2}}{{\left({s}+{1}\right)}}^{{2}}}}=\frac{{A}}{{s}}+\frac{{B}}{{{s}}^{{2}}}+\frac{{C}}{{{s}+{1}}}+\frac{{D}}{{{\left({s}+{1}\right)}}^{{2}}}.

As+Bs2+Cs+1+D(s+1)2=As(s+1)2+B(s+1)2+Cs2(s+1)+Ds2s2(s+1)2=As3+2As2+As+Bs2+2Bs+B+Cs3+Cs2+Ds2s2(s+1)2=\frac{{A}}{{s}}+\frac{{B}}{{{s}}^{{2}}}+\frac{{C}}{{{s}+{1}}}+\frac{{D}}{{{\left({s}+{1}\right)}}^{{2}}}=\frac{{{A}{s}{{\left({s}+{1}\right)}}^{{2}}+{B}{{\left({s}+{1}\right)}}^{{2}}+{C}{{s}}^{{2}}{\left({s}+{1}\right)}+{D}{{s}}^{{2}}}}{{{{s}}^{{2}}{{\left({s}+{1}\right)}}^{{2}}}}=\frac{{{A}{{s}}^{{3}}+{2}{A}{{s}}^{{2}}+{A}{s}+{B}{{s}}^{{2}}+{2}{B}{s}+{B}+{C}{{s}}^{{3}}+{C}{{s}}^{{2}}+{D}{{s}}^{{2}}}}{{{{s}}^{{2}}{{\left({s}+{1}\right)}}^{{2}}}}=

=s3(A+C)+s2(2A+B+C+D)+s(A+2B)+B(s2(s+1))2=\frac{{{{s}}^{{3}}{\left({A}+{C}\right)}+{{s}}^{{2}}{\left({2}{A}+{B}+{C}+{D}\right)}+{s}{\left({A}+{2}{B}\right)}+{B}}}{{{\left({{s}}^{{2}}{\left({s}+{1}\right)}\right)}}^{{2}}}

It should equal 1s2(s+1)2\frac{{1}}{{{{s}}^{{2}}{{\left({s}+{1}\right)}}^{{2}}}}; so, we have following system:

{A+C=02A+B+C+D=0A+2B=0B=1{\left\{\begin{array}{c}{A}+{C}={0}\\{2}{A}+{B}+{C}+{D}={0}\\{A}+{2}{B}={0}\\{B}={1}\\ \end{array}\right.}

From the last equation, B=1{B}={1}; from the third equation, A=2{A}=-{2}; from the first equation, C=2{C}={2}; and from the second equation,D=1{D}={1}. So,

1s2(s+1)2=2s+1s2+2s+1+1(s+1)2\frac{{1}}{{{{s}}^{{2}}{{\left({s}+{1}\right)}}^{{2}}}}=-\frac{{2}}{{s}}+\frac{{1}}{{{s}}^{{2}}}+\frac{{2}}{{{s}+{1}}}+\frac{{1}}{{{\left({s}+{1}\right)}}^{{2}}}.

Therefore,

L1(1s2(s+1)2)=2L1(1s)+L1(1s2)+2L1(1s+1)+L1(1(s+1)2)=21+t+2et+L1(1(s+1)2){{L}}^{{-{{1}}}}{\left(\frac{{1}}{{{{s}}^{{2}}{{\left({s}+{1}\right)}}^{{2}}}}\right)}=-{2}{{L}}^{{-{{1}}}}{\left(\frac{{1}}{{s}}\right)}+{{L}}^{{-{{1}}}}{\left(\frac{{1}}{{{s}}^{{2}}}\right)}+{2}{{L}}^{{-{{1}}}}{\left(\frac{{1}}{{{s}+{1}}}\right)}+{{L}}^{{-{{1}}}}{\left(\frac{{1}}{{{\left({s}+{1}\right)}}^{{2}}}\right)}=-{2}\cdot{1}+{t}+{2}{{e}}^{{-{t}}}+{{L}}^{{-{{1}}}}{\left(\frac{{1}}{{{\left({s}+{1}\right)}}^{{2}}}\right)}

To find L1(1(s+1)2){{L}}^{{-{{1}}}}{\left(\frac{{1}}{{{\left({s}+{1}\right)}}^{{2}}}\right)}, note that dds1s+1=1(s+1)2-\frac{{d}}{{{d}{s}}}\frac{{1}}{{{s}+{1}}}=\frac{{1}}{{{\left({s}+{1}\right)}}^{{2}}}. Now, using property 3 of the Laplace transform and the fact that L(et)=1s+1{L}{\left({{e}}^{{-{{t}}}}\right)}=\frac{{1}}{{{s}+{1}}}, we obtain that

L(tet)=dds1s+1=1(s+1)2{L}{\left({t}{{e}}^{{-{{t}}}}\right)}=-\frac{{d}}{{{d}{s}}}\frac{{1}}{{{s}+{1}}}=\frac{{1}}{{{\left({s}+{1}\right)}}^{{2}}}.

Taking the inverse transform of both sides yields

L1(1(s+1)2)=tet{{L}}^{{-{{1}}}}{\left(\frac{{1}}{{{\left({s}+{1}\right)}}^{{2}}}\right)}={t}{{e}}^{{-{{t}}}}.

Finally,

L1(1s2(s+1)2)=2+t+2et+tet{{L}}^{{-{{1}}}}{\left(\frac{{1}}{{{{s}}^{{2}}}}{{\left({s}+{1}\right)}}^{{2}}\right)}=-{2}+{t}+{2}{{e}}^{{-{{t}}}}+{t}{{e}}^{{-{{t}}}}.

As can be seen, to successfully take the inverse Laplace transform, you should identify the denominator and master partial fraction decomposition. These are two essential parts, and only a lot of practice can improve your skills.