Table of Laplace Transforms
This is not a complete list of Laplace transforms, but it contains all common transforms, which can be used to quickly find solutions of differential equations and integrals:
$$${f{{\left({t}\right)}}}={{L}}^{{-{1}}}{\left({F}{\left({s}\right)}\right)}$$$ | $$${F}{\left({s}\right)}={L}{\left({f{{\left({t}\right)}}}\right)}$$$ |
$$${1}$$$ | $$$\frac{{1}}{{s}}$$$ |
$$${{t}}^{{n}}$$$, $$${n}={0},{1},{2},{3}\ldots$$$ | $$$\frac{{{n}!}}{{{{s}}^{{{n}+{1}}}}}$$$ |
$$${{t}}^{{n}}$$$, $$${n}>-{1}$$$ | $$$\frac{{\Gamma{\left({n}+{1}\right)}}}{{{s}}^{{{n}+{1}}}}$$$ |
$$${{e}}^{{{a}{t}}}$$$ | $$$\frac{{1}}{{{s}-{a}}}$$$ |
$$${{t}}^{{{n}-\frac{{1}}{{2}}}}$$$, $$${n}={1},{2},{3}\ldots$$$ | $$$\frac{{{1}\cdot{3}\cdot{5}\cdot\ldots\cdot{\left({2}{n}-{1}\right)}\cdot\sqrt{{\pi}}}}{{{{2}}^{{n}}{{s}}^{{{n}+\frac{{1}}{{2}}}}}}$$$ |
$$$\sqrt{{{t}}}$$$ | $$$\frac{\sqrt{{\pi}}}{{{2}{{s}}^{{\frac{{3}}{{2}}}}}}$$$ |
$$${\sin{{\left({a}{t}\right)}}}$$$ | $$$\frac{{a}}{{{{s}}^{{2}}+{{a}}^{{2}}}}$$$ |
$$${\cos{{\left({a}{t}\right)}}}$$$ | $$$\frac{{s}}{{{{s}}^{{2}}+{{a}}^{{2}}}}$$$ |
$$${\sinh{{\left({a}{t}\right)}}}$$$ | $$$\frac{{a}}{{{{s}}^{{2}}-{{a}}^{{2}}}}$$$ |
$$${\cosh{{\left({a}{t}\right)}}}$$$ | $$$\frac{{s}}{{{{s}}^{{2}}-{{a}}^{{2}}}}$$$ |
$$${t}{\sin{{\left({a}{t}\right)}}}$$$ | $$$\frac{{{2}{a}{s}}}{{{\left({{s}}^{{2}}+{{a}}^{{2}}\right)}}^{{2}}}$$$ |
$$${t}{\cos{{\left({a}{t}\right)}}}$$$ | $$$\frac{{{{s}}^{{2}}-{{a}}^{{2}}}}{{{\left({{s}}^{{2}}+{{a}}^{{2}}\right)}}^{{2}}}$$$ |
$$${\sin{{\left({a}{t}+{b}\right)}}}$$$ | $$$\frac{{{s}\cdot{\sin{{\left({b}\right)}}}+{a}\cdot{\cos{{\left({b}\right)}}}}}{{{{s}}^{{2}}+{{a}}^{{2}}}}$$$ |
$$${\cos{{\left({a}{t}+{b}\right)}}}$$$ | $$$\frac{{{s}\cdot{\cos{{\left({b}\right)}}}-{a}\cdot{\sin{{\left({b}\right)}}}}}{{{{s}}^{{2}}+{{a}}^{{2}}}}$$$ |
$$${{e}}^{{{a}{t}}}{\sin{{\left({b}{t}\right)}}}$$$ | $$$\frac{{b}}{{{{\left({s}-{a}\right)}}^{{2}}+{{b}}^{{2}}}}$$$ |
$$${{e}}^{{{a}{t}}}{\cos{{\left({b}{t}\right)}}}$$$ | $$$\frac{{{s}-{a}}}{{{{\left({s}-{a}\right)}}^{{2}}+{{b}}^{{2}}}}$$$ |
$$${{e}}^{{{a}{t}}}{\sinh{{\left({b}{t}\right)}}}$$$ | $$$\frac{{b}}{{{{\left({s}-{a}\right)}}^{{2}}-{{b}}^{{2}}}}$$$ |
$$${{e}}^{{{a}{t}}}{\cosh{{\left({b}{t}\right)}}}$$$ | $$$\frac{{{s}-{a}}}{{{{\left({s}-{a}\right)}}^{{2}}-{{b}}^{{2}}}}$$$ |
$$${{t}}^{{n}}{{e}}^{{{a}{t}}}$$$, $$${n}={1},{2},{3}\ldots$$$ | $$$\frac{{{n}!}}{{{\left({s}-{a}\right)}}^{{{n}+{1}}}}$$$ |
$$${f{{\left({c}{t}\right)}}}$$$ | $$$\frac{{1}}{{c}}{F}{\left(\frac{{s}}{{c}}\right)}$$$ |
$$${u}_{{c}}{\left({t}\right)}={u}{\left({t}-{c}\right)}$$$ | $$$\frac{{{e}}^{{-{c}{s}}}}{{s}}$$$ |
$$${u}_{{c}}{\left({t}\right)}{f{{\left({t}-{c}\right)}}}$$$ | $$${{e}}^{{-{c}{s}}}{F}{\left({s}\right)}$$$ |
$$$\delta{\left({t}-{c}\right)}$$$ | $$${{e}}^{{-{c}{s}}}$$$ |
$$${{e}}^{{{c}{t}}}{f{{\left({t}\right)}}}$$$ | $$${F}{\left({s}-{c}\right)}$$$ |
$$${{t}}^{{n}}{f{{\left({t}\right)}}}$$$, $$${n}={1},{2},{3}\ldots$$$ | $$${{\left(-{1}\right)}}^{{n}}{{F}}^{{{\left({n}\right)}}}{\left({s}\right)}$$$ |
$$${\int_{{0}}^{{t}}}{f{{\left(\tau\right)}}}{d}\tau$$$ | $$$\frac{{{F}{\left({s}\right)}}}{{s}}$$$ |
$$${\int_{{0}}^{{t}}}{f{{\left({t}-\tau\right)}}}{g{{\left(\tau\right)}}}{d}\tau$$$ | $$${F}{\left({s}\right)}{G}{\left({s}\right)}$$$ |
$$${f{'}}{\left({t}\right)}$$$ | $$${s}{F}{\left({s}\right)}-{f{{\left({0}\right)}}}$$$ |
$$${f{''}}{\left({t}\right)}$$$ | $$${{s}}^{{2}}{F}{\left({s}\right)}-{s}{f{{\left({0}\right)}}}-{f{'}}{\left({0}\right)}$$$ |
$$${{f}}^{{{\left({n}\right)}}}{\left({t}\right)}$$$ | $$${{s}}^{{n}}{F}{\left({s}\right)}-{\sum_{{{k}={0}}}^{{{n}-{1}}}}{\left({{s}}^{{{n}-{1}-{k}}}{{f}}^{{{\left({k}\right)}}}{\left({0}\right)}\right)}$$$ |