Multiplying Mixed Numbers
To multiply mixed numbers
- convert mixed numbers to improper fractions
- multiply fractions
- reduce improper fraction (if possible) and convert to mixed number (if needed).
Note! Rules for determining sign of the result are same as when multiplying integers.
Example 1. Find $$${2}\frac{{4}}{{5}}\cdot\frac{{7}}{{8}}$$$.
First number is mixed: convert it into improper fraction: $$${2}\frac{{4}}{{5}}=\frac{{14}}{{5}}$$$.
$$$\frac{{14}}{{5}}\cdot\frac{{7}}{{8}}=\frac{{{14}\cdot{7}}}{{{5}\cdot{8}}}=\frac{{98}}{{40}}$$$.
Now, reduce fraction: $$$\frac{{98}}{{40}}=\frac{{49}}{{20}}$$$.
Convert to mixed number: $$$\frac{{49}}{{20}}={2}\frac{{9}}{{20}}$$$.
Answer: $$$\frac{{49}}{{20}}={2}\frac{{9}}{{20}}$$$.
Next example.
Example 2. Find $$${3}\frac{{8}}{{9}}\cdot{2}\frac{{1}}{{5}}$$$.
Convert both numbers into improper fractions: $$${3}\frac{{8}}{{9}}=\frac{{35}}{{9}}$$$ and $$${2}\frac{{1}}{{5}}=\frac{{11}}{{5}}$$$.
Now, multiply fractions: $$$\frac{{35}}{{9}}\cdot\frac{{11}}{{5}}=\frac{{{35}\cdot{11}}}{{{9}\cdot{5}}}=\frac{{385}}{{45}}$$$
Reduce fraction: $$$\frac{{385}}{{45}}=\frac{{77}}{{9}}$$$.
Convert to mixed number: $$$\frac{{77}}{{9}}={8}\frac{{5}}{{9}}$$$.
Answer: $$$\frac{{77}}{{9}}={8}\frac{{5}}{{9}}$$$.
Next example.
Example 3. Find $$${2}\frac{{1}}{{3}}\cdot{\left(-{3}\frac{{1}}{{4}}\right)}$$$.
Convert both numbers into fractions: $$${2}\frac{{1}}{{3}}=\frac{{7}}{{3}}$$$ and $$$-{3}\frac{{1}}{{4}}=-\frac{{13}}{{4}}$$$.
Multiply fractions: $$$\frac{{7}}{{3}}\cdot{\left(-\frac{{13}}{{4}}\right)}=\frac{{{7}\cdot{\left(-{13}\right)}}}{{{3}\cdot{4}}}=-\frac{{91}}{{12}}$$$.
Fraction is irreducible.
Convert to mixed number: $$$-\frac{{91}}{{12}}=-{7}\frac{{7}}{{12}}$$$.
Answer: $$$-\frac{{91}}{{12}}=-{7}\frac{{7}}{{12}}$$$.
Now, it is time to practice.
Exercise 1. Find $$${2}\frac{{2}}{{5}}\cdot{2}\frac{{1}}{{3}}$$$.
Answer: $$$\frac{{28}}{{5}}={5}\frac{{3}}{{5}}$$$.
Next exercise.
Exercise 2. Find $$$-{1}\frac{{4}}{{7}}\cdot{1}\frac{{4}}{{5}}$$$.
Answer: $$$-\frac{{99}}{{35}}=-{2}\frac{{29}}{{35}}$$$.
Next example.
Exercise 3. Find $$$-{9}\frac{{1}}{{2}}\cdot{\left(-{3}\frac{{3}}{{5}}\right)}$$$.
Answer: $$$\frac{{171}}{{5}}={34}\frac{{1}}{{5}}$$$.