Subtracting Integers

Integers are subtracted in the same fashion as whole numbers, except that certain rules should be applied.

  • If you subtract negative integer from positive then just add numbers ignoring any minuses, i.e a(b)=a+b{\color{blue}{{{a}-{\left(-{b}\right)}={a}+{b}}}}.
  • If you subtract positive integer from negative, add numbers ignoring any minuses and then place minus in front of result, i.e. ab=(a+b){\color{green}{{-{a}-{b}=-{\left({a}+{b}\right)}}}}.

Example 1. Find 46(21){46}-{\left(-{21}\right)}.

46(21)=46+21=67{46}-{\left(-{21}\right)}={46}+{21}={67}.

So, 46(21)=67{46}-{\left(-{21}\right)}={67} .

Next example.

Example 2. Find 3521-{35}-{21}.

3521=(35+21)=56-{35}-{21}=-{\left({35}+{21}\right)}=-{56}.

So, 3521=56-{35}-{21}=-{56}.

  • If you subtract positive integer from positive, then you are actually subtracting whole numbers.
  • If you subtract two negative numbers use following rule: a(b)=a+b=ba{\color{blue}{{-{a}-{\left(-{b}\right)}=-{a}+{b}={b}-{a}}}}.

Example 3. Find 2351{23}-{51}.

2351=28{23}-{51}=-{28}.

Another example.

Example 4. Find 48(19)-{48}-{\left(-{19}\right)}.

48(19)=48+19=1948=29-{48}-{\left(-{19}\right)}=-{48}+{19}={19}-{48}=-{29}.

So, 48(19)=29-{48}-{\left(-{19}\right)}=-{29} .

Final example shows how to subtract more than two integers.

Example 5. Find 48(45)34-{48}-{\left(-{45}\right)}-{34}.

We do such problems step-by-step.

First find 48(45)-{48}-{\left(-{45}\right)}. 48(45)=48+45=3-{48}-{\left(-{45}\right)}=-{48}+{45}=-{3}.

Now we are left with 334-{3}-{34}. 334=(3+34)=37-{3}-{34}=-{\left({3}+{34}\right)}=-{37}.

So, 48(45)34=37-{48}-{\left(-{45}\right)}-{34}=-{37}.

Now, it's your turn. Take pen and paper and solve following problems.

Exercise 1. Find 36-(-21).

Answer: 57.

Exercise 2. Find -57-60.

Answer: -117.

Exercise 3. Find 100-69.

Answer: 31.

Exercise 4. Find -45-(-60).

Answer: 15.

Exercise 5. Find 65-(-34)-(-35)-21-(-45)-100.

Answer: 58.